Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-17T13:24:03.076Z Has data issue: false hasContentIssue false

External Cavity Mid-Infrared Semiconductor Lasers

Published online by Cambridge University Press:  10 February 2011

H. Q. Le
Affiliation:
Department of Electrical and Computer Engineering and Space Vacuum Epitaxy CenterUniversity of HoustonHouston, TX 77204-4793, USA
C.-H. Lin
Affiliation:
Department of Electrical and Computer Engineering and Space Vacuum Epitaxy CenterUniversity of HoustonHouston, TX 77204-4793, USA
S. J. Murry
Affiliation:
Department of Electrical and Computer Engineering and Space Vacuum Epitaxy CenterUniversity of HoustonHouston, TX 77204-4793, USA
J. Zheng
Affiliation:
Department of Electrical and Computer Engineering and Space Vacuum Epitaxy CenterUniversity of HoustonHouston, TX 77204-4793, USA
S.-S. Pei
Affiliation:
Department of Electrical and Computer Engineering and Space Vacuum Epitaxy CenterUniversity of HoustonHouston, TX 77204-4793, USA
Get access

Abstract

Sb mid-IR laser can be used in external configuration to achieve wide wavelength tuning range. At low temperature, gain media with band-edge wavelengths between 3.3 to 4 pm have been demonstrated with wavelength tuning up to ∼9% of the center wavelength. Power output from few tens of mW to 0.2-W peak, 20-mW average was achieved. Type-II Sb laser promises the possibility of such performance at higher temperature, e. g. 200 K. However, significant trade-off must be considered between tuning range and power and efficiency. Optimization requires consideration of both basic wafer design and cavity geometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.See for example, “Infrared Spectroscopy of Biomolecules”, Ed. by Mantsch, Henry H. and Chapman, Dennis, Wiley-Liss, New York, 1996.Google Scholar
2. Le, H. Q., Turner, G. W., Ochoa, J. R., Manfra, M. J., Cook, C. C., and Zhang, Y.-H.External cavity mid-infrared semiconductor lasersProceeding of SPIE, Vol. 3001, p. 298 (1997).Google Scholar
3. Le, H. Q., Turner, G. W., Ochoa, J. R., Manfra, M. J., Cook, C. C., and Zhang, Y.-H.Broad wavelength tunability of grating-coupled external cavity mid-infrared semiconductor lasersAppl. Phys. Lett. 69, 2804 (1996).Google Scholar
4. Malin, J. I., Meyer, J. R., Lin, C-H., Chang, P.-C., Murry, S. J., Yang, R. Q., and Pei, S.-S., “Type-I1 mid-infrared quantum well lasers,” Appl. Phys. Lett. 68, 2976 (1996).Google Scholar
5. Lin, C.-H., Yang, R. Q., Murry, S. J., and Pei, S. S., Yan, C., McDaniel, D. L., and Falcon, M., “Room-Temperature Low-Threshold Type-il Quantum-Well Lasers at 4.5 µm”, IEEE Photon. Technol. Lett., vol. 9, pp. 15731575, (1997).Google Scholar
6. Olafsen, L. J., Aifer, E. H., Vurgaftman, I., Bewley, W. W., Felix, C. L., and Meyer, J. R., Zhang, D., Lin, C. H., and Pei, S. S., “Near Room Temperature Mid-IR Interband Cascade Laser”, Appl. Phys. Lett. 72, 2370 (1998).Google Scholar
7. Hasenberg, T. C., Chow, D. H., Kost, A. R., Miles, R. H., and West, L., Electron. Lett. 31, 275 (1995);R. H. Miles, D. H. Chow, Y.-H. Zhang, P. D. Brewer, and R. G. Wilson, Appl. Phys. Lett. 66, 1921 (1995).Google Scholar
8. Kurtz, S. R., Biefeld, R. M., Dawson, L. R., Baucom, K. C., and Howard, A. J., “Midwave (4.5 μn) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions,” Appl. Phys. Lett., Vol. 64. pp. 812814. (1994).Google Scholar
9. Le, H. Q., Lin, C. H., Murray, S. J., Yang, R. Q., and Pei, S. S., “Effects of the internal loss on power efficiency of InAs/GaInSb/AlSb QW lasers and comparison with InAsSb lasers”, IEEE J. of Quant. Electron. QE-34, 1016 (1998).Google Scholar
10. Roychoudhuri, C. et al. (to be published).Google Scholar