Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T07:26:50.195Z Has data issue: false hasContentIssue false

Fast and Slow UV-Photoresponse in n-Type GaN

Published online by Cambridge University Press:  10 February 2011

R. Rocha
Affiliation:
Physics Department, Instituto Superior Trcnico, P-1096 Lisbon, Portugal
S. Koynov
Affiliation:
Physics Department, Instituto Superior Trcnico, P-1096 Lisbon, Portugal
P. Brogueira
Affiliation:
Physics Department, Instituto Superior Trcnico, P-1096 Lisbon, Portugal
R. Schwarz
Affiliation:
Physics Department, Instituto Superior Trcnico, P-1096 Lisbon, Portugal
V. Chu
Affiliation:
Instituto de Engenharia de Sistemas e Computadores, P-1000 Lisbon, Portugal
M. Topf
Affiliation:
I. Physics Department, University of Giessen, D-35392 Giessen, Germany
D. Meister
Affiliation:
I. Physics Department, University of Giessen, D-35392 Giessen, Germany
B. K. Meyer
Affiliation:
I. Physics Department, University of Giessen, D-35392 Giessen, Germany
Get access

Abstract

The photocurrent decay in n-type GaN films prepared by low-pressure chemical vapor deposition (LPCVD) was measured in the ms-to-s time range using steady-state UV light and in the μs time regime using short high-power pulses from higher harmonics of a Nd:YAG laser. A power law time dependence is observed with exponents ranging from −0.1 to −0.3, which is an indication of a broad distribution of trapping states inside the band gap. Combining Hall effect results and the magnitude of the initial slope of the photocurrent decay we estimate a mobility-lifetime product of 2.1×10−4 cm2/V for photogenerated electrons at times below a few μs. Slow transients might be a handicap for applications of GaN in UV detectors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] McCluskey, M.D., Johnson, N.M., Van de Walle, C.G., Bour, D.P., Kneissl, M., and Walukiewicz, W.., Phys. Rev. Lett. 80 4008(1998).10.1103/PhysRevLett.80.4008Google Scholar
[2] Hirsch, M.T., Wolk, J.A., Walukiewicz, W., and Haller, E.E., Appl. Phys. Lett. 71, 1098(1997).10.1063/1.119738Google Scholar
[3] Topf, M., Koynov, S., Fischer, S., Dirnstorfer, I., Kriegseis, W., Burkhardt, W., and Meyer, B.K., Mat. Res. Soc. Symp. Proc. 449 (1997). Koynov, S., Topf, M., Fischer, S., Meyer, B.K., Radojkovic, P., Hartmann, E., Liliental-Weber, Z., J. Appl. Phys. 82, 1 (1997).Google Scholar
[4] Qiu, C.H. and Pankove, J.I, Appl. Phys. Lett. 70, 1983(1997).10.1063/1.118799Google Scholar
[5] Schwarz, R., Rocha, R., Brogueira, P., Koynov, S., Chu, V., Topf, M., Meister, D., and Meyer, B.K., to be published.Google Scholar
[6] Antoniadis, H. and Schiff, E.A., Phys. Rev. B46, 9842 (1992),Google Scholar
[7] Yi, Cryu-Chul and Wessels, Bruce W., Appl. Phys. Lett. 68 3769(1996).10.1063/1.116001Google Scholar
[8] Bandic, Z.Z., Bridger, P.M., Piquette, E.C., and McGill, T.C., Appl. Phys. Lett. 73, 3276(1998).10.1063/1.122743Google Scholar