Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-21T21:57:34.779Z Has data issue: false hasContentIssue false

Fast In-diffusion of Hydrogen at the Initial Stage of Hydrogen Plasma Treatment on a-Si:H Films Observed by In-situ ESR Measurements

Published online by Cambridge University Press:  17 March 2011

Ujjwal Kr. Das
Affiliation:
JRCAT-ATP, 1-1-4 Higashi, Tsukuba City, Ibaraki 305 0046, Japan
Tetsuji Yasuda
Affiliation:
JRCAT-NAIR, 1-1-4 Higashi, Tsukuba City, Ibaraki 305 0046, Japan
Satoshi Yamasaki
Affiliation:
JRCAT-NAIR, 1-1-4 Higashi, Tsukuba City, Ibaraki 305 0046, Japan
Get access

Abstract

Time evolution of Si dangling bonds (dbs) was monitored during atomic hydrogen treatment of a-Si:H films using an in-situ electron-spin-resonance (ESR) technique. A high diffusion coefficient (>10−10 cm2s−1) of free atomic H in a-Si:H was detected at the very initial stage of H exposure. Atomic H diffuses into the bulk of the film (∼100 nm) and creates additional metastable dbs. The spatial distribution of such metastable dbs becomes deeper at lower treatment temperatures. An activated type of db creation reaction determines the distribution of these dbs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tanaka, K. and Matsuda, A., Mat. Sci. Rep. 2, 139 (1987).Google Scholar
2. Koh, J., Ferlauto, A. S., Rovira, P. I., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett. 75, 2286 (1999).Google Scholar
3. Futako, W., Yoshino, K., Fortmann, C. M., and Shimizu, I., J. Appl. Phys. 85, 812 (1999).Google Scholar
4. Stutzmann, M., Jackson, W. B., and Tsai, C. C., Appl. Phys. Lett. 45, 1075 (1984).Google Scholar
5. Godet, C. and Cabarrocas, P. Roca i, J. Appl. Phys. 80, 97 (1996).Google Scholar
6. Branz, H. M., Phys. Rev. B59, 5498 (1999).Google Scholar
7. Jackson, W. B. and Tsai, C. C., Phys. Rev. B45, 6564 (1992).Google Scholar
8. Beyer, W. and Zastrow, U., in Amorphous Silicon Technology-1996, edited by Hack, M., Schiff, E. A., Wagner, S., Schropp, R., and Matsuda, A. (Mat. Res. Soc. Symp. Proc. 420, Pittsburg, PA, 1996), p.497.Google Scholar
9. Yamasaki, S., Malten, C., Umeda, T., Isoya, J., and Tanaka, K., in Microcrystalline and Nanocrystalline Semiconductors -1998, edited by Canham, L. T., Sailor, M. J., Tanaka, K., and Tsai, C. C. (Mat. Res. Soc. Symp. Proc. 536, Warrendale, PA, 1999), p.463.Google Scholar
10. Yamasaki, S., Umeda, T., Isoya, J., and Tanaka, K., Appl. Phys. Lett. 70, 1137 (1997).Google Scholar
11. Yamasaki, S., Umeda, T., Isoya, J., and Tanaka, K., J. Non-Cryst. Solids 227–230, 83 (1998).Google Scholar
12. Yamasaki, S., Das, U. K., Umeda, T., Isoya, J., and Tanaka, K., to appear in J. Non-Cryst. Solids (2000).Google Scholar
13. Saitoh, K., Kondo, M., Fukawa, M., Nishiyama, T., Matsuda, A., Futako, W., and Shimizu, I., Appl. Phys. Lett. 71, 3403 (1997).Google Scholar
14. Branz, H. M., Phys. Rev. B60, 7725 (1999).Google Scholar