Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-17T18:40:42.568Z Has data issue: false hasContentIssue false

Fatigue Failure Mechanisms in Pb95.5 Sn2Ag2.5 Solder Joints: a Combined SIMS/XRD Study

Published online by Cambridge University Press:  15 February 2011

A. Scandurra
Affiliation:
Consorzio Catania Ricerche, Viale A.Doria 8, 95125 Catania,Italy
A. Torrisi
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, Viale A.Doria 6, 95125 Catania, Italy
G. Spoto
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, Viale A.Doria 6, 95125 Catania, Italy
I. Fragala
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, Viale A.Doria 6, 95125 Catania, Italy
O. Puglisi
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, Viale A.Doria 6, 95125 Catania, Italy
Get access

Abstract

The effects of accelerated fatigue tests on the crack formation in 95.5%Pb-2%Sn-2.5%Ag and 95%Pb-5%Sn solder joints have been investigated. The fracture surfaces which form upon mechanical stress have been studied by SIMS and XRD techniques. They are always located in the solder layer and show grain growth of the Pb-rich α phase present in the phase diagram of the Pb-Sn and the Pb-Sn-Ag systems. Grain growth is accompanied by tin depletion. XRD patterns of samples after 1, 40, 80 fatigue cycles show no variations of lattice parameters of the phases present in the alloy thus ruling-out the formation of new phases under mechanical stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Frear, D., Grivas, D., Quan, L., Morris, J. W., in Electronic Packaging Materials Science II Symposium, (Mater. Res.Soc. Symp. Proc. 72, Palo Alto CA), p. 181 (1986).Google Scholar
2) Frear, D., Morris, J. W. Jr., Proc. 43 rd Annual Meeting of Electronic Microscopy Society of America, p. 342 (1985).Google Scholar
3) O'Clock, G.D. Jr., Peters, M.S., Paters, J.R., Kleese, G.A., Martini, R.V., IEEE Trans. on Comp. Hybrids and Manuf. Technol. CHMT–10, 82 (1987).Google Scholar
4) Inoue, H., Kurihara, Y. and Hachino, H., IEEE Trans. on Comp. Hybrids and Manuf. Technol. CHMT-9x, No 2, (1986).Google Scholar
5) Scandurra, A., Licciardello, A., Torrisi, A., Mantia, A. La, Puglisi, O., J. of Mater. Res., in press.Google Scholar
6) Marwick, A.D., Piller, R.C., Sivell, P.M., J. of Nuclear Materials, 83, 36, (1979).Google Scholar
7) Konetzki, R.A., Chang, Y.A., J. of Mater. Res. 4, 6, 1421 (1989)Google Scholar
8) Landolt-Bornstein, , Hellwege, K.H., HelIwege, A.M. Eds.,Springer-Verlag, New York (1971) Vol.6, p. 822.Google Scholar
9) Ternary, Alloys, Petzow, G., Effemberg, G. Eds., VCH Weinheim, (1988), Vol.2, p. 464.Google Scholar