Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T17:43:03.929Z Has data issue: false hasContentIssue false

First-principles study of electronic transport properties of graphene nanoribbons with pentagon-heptagon (5-7) line defects

Published online by Cambridge University Press:  06 February 2015

Yasutaka Nishida
Affiliation:
Low-power Electronics Association & Project (LEAP), Tsukuba, Ibaraki 305-8569, Japan
Takashi Yoshida
Affiliation:
Low-power Electronics Association & Project (LEAP), Tsukuba, Ibaraki 305-8569, Japan
Fumihiko Aiga
Affiliation:
Low-power Electronics Association & Project (LEAP), Tsukuba, Ibaraki 305-8569, Japan
Yuichi Yamazaki
Affiliation:
Low-power Electronics Association & Project (LEAP), Tsukuba, Ibaraki 305-8569, Japan
Hisao Miyazaki
Affiliation:
Low-power Electronics Association & Project (LEAP), Tsukuba, Ibaraki 305-8569, Japan
Akihiro Kajita
Affiliation:
Low-power Electronics Association & Project (LEAP), Tsukuba, Ibaraki 305-8569, Japan
Tadashi Sakai
Affiliation:
Low-power Electronics Association & Project (LEAP), Tsukuba, Ibaraki 305-8569, Japan
Get access

Abstract

In this study, we investigated the influence of line defects consisting of pentagon-heptagon (5-7) pairs on the electronic transport properties of zigzag-edged and armchair-edged graphene nanoribbons (GNRs). Using the first-principles density functional theory, we study their electronic properties. To investigate their current-voltage (I-V) characteristics at low bias voltage (∼ 1 meV), we use the nonequilibrium Green’s function method. As a result, we found that the conductance of the GNRs having a connected line defect between source and drain shows better performance than that of the ideal zigzag-edged GNRs (ZGNRs). A detailed investigation of the transmission spectra and the wave function around the Fermi level reveals that the line defects arranged along the transport direction work similar to an edge state of the ZGNRs and can be an additional conduction channel. Our results suggest that such a line defect can be effective for low-resistance GNR interconnects.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFFERENCE

Novoselov, K. S., Fal'ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., and Kim, K., Nature 490, 192 (2012).CrossRefGoogle Scholar
Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., and Stormer, H. L., Solid State Commun. 146, 351 (2008).CrossRefGoogle Scholar
Geim, A. K., Science 324, 1530 (2009).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Katagiri, M., Miyazaki, H., Yamazaki, Y., Zhang, L., Matsumoto, T., Wada, M., Kajita, A., and Sakai, T., Proc. IEEE Int. Interconnect Technology Conf. 2013, p. 113.Google Scholar
Wada, M., Ishikura, T., Nishide, D., Ito, B., Yamazaki, Y., Saito, T., Isobayashi, A., Kagaya, M., Matsumoto, T., Kitamura, M., Sakata, A., Watanabe, M., Sakuma, N., Kajita, A. and Sakai, T., Proc. IEEE Int. Interconnect Technology Conf. 2013, p. 187.Google Scholar
Miyazaki, H., Katagiri, M., Yamazaki, Y., Suzuki, M., Sakuma, N., Kosugi, R., Imazeki, K., Ueno, K., Kajita, A., and Sakai, T., Ext. Abstr. Solid State Devices and Materials, 2013, p. 678.Google Scholar
Yamazaki, Y., Wada, M., Kitamura, M., Katagiri, M., Sakuma, N., Saito, T., Isobayashi, A., Suzuki, M., Sakata, A., Kajita, A., and Sakai, T., Appl. Phys. Express 5, 025101 (2012).CrossRefGoogle Scholar
Nakada, K., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 54, 17954 (1996).CrossRefGoogle Scholar
Wakabayashi, K., Fujita, M., Ajiki, H., and Sigrist, M., Phys. Rev. B 59, 8271 (1999).CrossRefGoogle Scholar
Martins, T. B., Miwa, R. H., da Silva, A. J. R., and Fazzio, A., Phys. Rev. Lett. 98, 196803 (2007).CrossRefGoogle Scholar
Dutta, S. and Pati, S. K., J. Phys. Chem. B 112, 1333 (2008).CrossRefGoogle Scholar
Huang, B., Yan, Q. M., Zhou, G., Wu, J., Gu, B. L., and Duan, W. H., Appl. Phys. Lett. 91, 253122 (2007).CrossRefGoogle Scholar
Miwa, R. H., Martins, T. B., and Fazzio, A., Nanotechnology 19, 155708 (2008).CrossRefGoogle Scholar
Padilha, J. E., Pontes, R. B., da Silva, A. J. R., and Fazzio, A., Int. J. Quantum Chem. 111, 1379 (2011).CrossRefGoogle Scholar
Yan, Q., Huang, B., Yu, J., Zheng, F., Zang, J., Wu, J., Gu, B. L., Liu, F., and Duan, W., Nano Lett. 7, 1469 (2007).CrossRefGoogle Scholar
Yu, S. S., Zheng, Y. W. T., and Jiang, Q., IEEE Trans. Nanotechnol. 9, 78 (2010).Google Scholar
Zhao, P., Liu, D. S., Li, S. J., and Chen, G., Chem. Phys. Lett. 554, 172 (2012).CrossRefGoogle Scholar
Nishida, Y., Yoshida, T., Aiga, F., Yamazaki, Y., Miyazaki, H., Kajita, A., and Sakai, T., to be published in JJAP.Google Scholar
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
Koskinen, P., Malola, S., and Häkkinen, H., Phys. Rev. Lett. 101, 115502 (2008).CrossRefGoogle Scholar
Okada, S., Kawai, T., and Nakada, K., J. Phys. Soc. Jpn 80, 013709 (2011)CrossRefGoogle Scholar
Hawkins, P., Begliarbekov, M., Zivkovic, M., Strauf, S., and Search, C. P., J. Phys. Chem. C 116, 18382 (2012).CrossRefGoogle Scholar
Hashimoto, A., Suenaga, K., Golter, A., Urita, K., and Iijima, S., Nature 430, 870 (2004).CrossRefGoogle Scholar
Meyer, J. C., Kisielowski, C., Erni, R., Rossell, M. D., Crommie, M. F., and Zettl, A., Nano Lett. 8, 3582 (2008).CrossRefGoogle Scholar
Červenka, J., Katsnelson, M. I., and Flipse, C. F. J., Nat. Phys. 5, 840 (2009)CrossRefGoogle Scholar
Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I., Batzill, M., Nat. Nanotechnol. 5, 326 (2010).CrossRefGoogle Scholar
Stone, A. and Wales, D., Chem. Phys. Lett. 128, 501 (1986).CrossRefGoogle Scholar
Thrower, P. A., in Chemistry and Physics of Carbon, edited by Walker, P. L. Jr. (Dekker, New York, 1969), Vol. 5, p. 262.Google Scholar
Landauer, R., IBM J. Res. Dev. 1, 233 (1957).CrossRefGoogle Scholar
Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
Ozaki, T., Phys. Rev. B 67, 155108 (2003).CrossRefGoogle Scholar
Ozaki, T., Nishio, K., and Kino, H., Phys. Rev. B 81, 035116 (2010).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Morrison, I., Bylander, D. M., and Kleinman, L., Phys. Rev. B 47, 6728 (1993).CrossRefGoogle Scholar
Louie, S. G., Froyen, S., and Cohen, M. L., Phys. Rev. B 26, 1738 (1982).CrossRefGoogle Scholar
Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
Andriotis, A. N., Richter, E. and Menon, M., Appl. Phys. Lett. 91, 152105 (2007).CrossRefGoogle Scholar
Andriotis, A. N. and Menon, M., Appl. Phys. Lett. 92, 042115 (2008).CrossRefGoogle Scholar