Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T21:28:25.392Z Has data issue: false hasContentIssue false

Flexible monocrystalline Si films for thin film devices from transfer processes

Published online by Cambridge University Press:  15 February 2011

Christopher Berge
Affiliation:
Institute of Physical Electronics, University of Stuttgart, 70569 Stuttgart, Germany
Thomas A. Wagner
Affiliation:
Institute of Physical Electronics, University of Stuttgart, 70569 Stuttgart, Germany
Willi Brendle
Affiliation:
Institute of Physical Electronics, University of Stuttgart, 70569 Stuttgart, Germany
Cecilia Craff-Castillo
Affiliation:
Institute of Physical Electronics, University of Stuttgart, 70569 Stuttgart, Germany
Markus B. Schubert
Affiliation:
Institute of Physical Electronics, University of Stuttgart, 70569 Stuttgart, Germany
Jürgen H. Werner
Affiliation:
Institute of Physical Electronics, University of Stuttgart, 70569 Stuttgart, Germany
Get access

Abstract

Transfer of monocrystalline silicon films to arbitrary foreign substrates is a promising way for the fabrication of high quality silicon films on foreign substrates, demonstrated by solar cell efficiencies on glass as high as 16.6 % in the past. Transfer technologies also enable the use of flexible substrates. This paper investigates the mechanical stability of the separation layer for two different morphologies. First measurements on the minimum bending radius of unsupported silicon films are presented that allow us to estimate minimum curvatures for flexible monocrystalline devices. Finally, we report the first flexible monocrystalline thin film silicon solar cell of 4 cm2 with an independently confirmed efficiency of 14.6 %.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yonehara, T., Sakaguchi, K., and Sato, N., Appl. Phys. Lett. 64, 2108 (1994)Google Scholar
2. Sakaguchi, K. and Yonehara, T., Solid State Technology 43, 88 (2000)Google Scholar
3. Bruel, M., Aspar, B., and Auberton-Herve, A.-J., Jpn. J. Appl. Phys. 36, 1636 (1997)Google Scholar
4. Bruel, M., Materials Research Innovations 3, 9 (1999)Google Scholar
5. Weber, K. J., Blakers, A. W., and Catchpole, K. R., Applied Physics A 69, 195199 (1999)Google Scholar
6. Tayanaka, H., Yamauchi, K., and Matsushita, T. in: Proc. 2nd World Conf. on Photovolt. Solar Energy Conversion, Eds. Schmid, J., Ossenbrink, H., Helm, P., Ehmann, H., Dunlop, E. D. (Europ. Commission, Ispra, 1998), p. 1272 Google Scholar
7. Brendel, R., Artmann, H., Oelting, S., Frey, W., Werner, J.H., and Queisser, J. H., Appl. Phys. A 67, 151 (1998)Google Scholar
8. Rinke, T. J., Bergmann, R. B., and Werner, J. H., Appl. Phys. A 68, 705707 (1999)Google Scholar
9. Feldrapp, K., Horbelt, R., Auer, R., and Brendel, R., Progr. in PV: Res. Appl. 11, 105 (2003)Google Scholar
10. Auer, R. and Brendel, R., Mat. Res. Soc. Symp. Proc. 681E, 19.2.1 (2001)Google Scholar
11. Bergmann, R. B., Rinke, T. J., Berge, C., Schmidt, J., and Werner, J. H., Solar Energy Materials & Solar Cells 74, 213218 (2001)Google Scholar
12. McCann, M. J., Catchpole, K. R., Weber, K. J., and Blakers, A.W., Solar Energy Materials & Solar Cells 68, 135171 (2001)Google Scholar
13. Catchpole, K. R., McCann, M. J., Weber, K. J., and Blakers, A. W., Solar Energy Materials & Solar Cells 68, 173215 (2001)Google Scholar
14. Bergmann, R. B., Berge, C., Rinke, T. J., and Werner, J. H., Mat. Res. Soc. Symp. Proc. 695E, D2.1.1 (2001)Google Scholar
15. Berge, C., Bergmann, R. B., Rinke, T. J., and Werner, J. H. in: Proc. 17th Europ. Photovolt. Solar Energy Conf., Eds. McNelis, B., Palz, W., Ossenbrink, H. A., and Helm, P. (WIP, Munich & ETA, Florence, 2002), p. 1277 Google Scholar