Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-06T22:52:45.168Z Has data issue: false hasContentIssue false

Formation and Thermal Stability of Nd0.32Y0.68Si1.7 Layers Formed by Channeled Ion Beam Synthesis

Published online by Cambridge University Press:  10 February 2011

M. F. Wu
Affiliation:
Department of Technical Physics, Peking University, Beijing, People's Republic of China Instituut voor Kern- en Stralingsfysika, University of Leuven, B-3001 Leuven, Belgium
A. Vantomne
Affiliation:
Instituut voor Kern- en Stralingsfysika, University of Leuven, B-3001 Leuven, Belgium
S. Hogg
Affiliation:
Instituut voor Kern- en Stralingsfysika, University of Leuven, B-3001 Leuven, Belgium
H. Pattyn
Affiliation:
Instituut voor Kern- en Stralingsfysika, University of Leuven, B-3001 Leuven, Belgium
G. Langouche
Affiliation:
Instituut voor Kern- en Stralingsfysika, University of Leuven, B-3001 Leuven, Belgium
S. Jin
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
H. Bender
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Get access

Abstract

The Nd-disilicide, which exists only in a tetragonal or an orthorhombic structure, cannot be grown epitaxially on a Si(111) substrate. However, by adding Y and using channeled ion beam synthesis, hexagonal Nd0.32Y0.68Si1.7 epilayers with lattice constant of aepi = 0.3915 nm and cepi = 0.4152 nm and with good crystalline quality (χmin of Nd and Y is 3.5% and 4.3 % respectively) are formed in a Si(111) substrate. This shows that the addition of Y to the Nd-Si system forces the latter into a hexagonal structure. The epilayer is stable up to 950 °C; annealing at 1000 °C results in partial transformation into other phases. The formation, the structure and the thermal stability of this ternary silicide have been studied using Rutherford backscattering/channeling, x-ray diffraction and transmission electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Thompson, R.D., Tsaur, B.Y., and Tu, K.N., Appl. Phys. Lett. 38, 535 (1981).10.1063/1.92442Google Scholar
[2] Knapp, J.A. and Picraux, S.T., Appl. Phys. Lett. 48, 466 (1986).10.1063/1.96532Google Scholar
[3] Siegal, M.P., Kaatz, F.H., Graham, W.R., Santiago, J.J., and Van der Spiegel, J., Appl. Surf. Sci. 38, 162 (1989).Google Scholar
[4] Duboz, J.Y., Badoz, P.A., d'Avitaya, F.A., and Chroboczek, J.A., Appl. Phys. Lett. 55, 84 (1989).Google Scholar
[5] Kaatz, F.H., Siegal, M.P., Graham, W.R., Van der Spiegel, J., and Santiago, J.J., Thin Solid Films 184, 325 (1990).Google Scholar
[6] Hsu, C.C., in Properties of Metal Silicides, edited by Maex, K. and Van Rossum, M. (INSPEC, London, 1995) p. 47.Google Scholar
[7] Wu, M.F., Vantomme, A., Pattyn, H., and Langouche, G., Appl. Phys. Lett. 67, 3886 (1995).10.1063/1.115306Google Scholar
[8] Wu, M.F., Vantomme, A., Pattyn, H., Langouche, G., and Bender, H., Appl. Phys. Lett. 68, 3260 (1996).10.1063/1.116567Google Scholar
[9] Wu, M.F., Vantomme, A., De Wachter, J., Degroote, S., Pattyn, H., Langouche, G., and Bender, H., J. Appl. Phys. 79, 6920 (1996).Google Scholar