Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-02T03:56:47.451Z Has data issue: false hasContentIssue false

Formation of coherent structures and mechanical properties of AlN/TiN multilayers

Published online by Cambridge University Press:  01 February 2011

G. Allidi
Affiliation:
giulio.allidi@epfl.ch
Farida Medjani
Affiliation:
farida.medjani@epfl.ch
Rosendo Sanjines
Affiliation:
rosendo.sanjines@epfl.ch, Switzerland
Ayat Karimi
Affiliation:
ayat.karimi@epfl.ch, EPFL, Physics, PH D2 454 (Batiment PH), Station 3, Lausanne, N/A, 1015, Switzerland, + 41 21 693 3395, + 41 21 693 4470
Get access

Abstract

AlN/TiN multilayered thin films with layer thickness ranging from 1 nm to 50 nm were synthesized using rf magnetron sputtering at 400°C. Two series of samples were prepared at the substrate bias of Vb = −25 V and −100 V to modify growth texture of individual layers and verify its influence on the formation of coherent structures. XRD and TEM observations showed that in large period films (tc ≥ 30 nm) each constituent grows under its own kinetic, leading to the formation of nano-crysatlline film randomly oriented with no pronounced texture. Decreasing progressively the layer thickness favours the alignment of (0002) basal plane of w-AlN on (111) plane of TiN, and results in development of strong (111) texture, prerequisite for stabilisation of c-AlN and the formation of epitaxial coherent structures. The degree of crystallographic coherence was found to be higher in TiN(111) oriented films than for TiN(002) textured films. The increase of hardness coincides with the structure transition from a randomly oriented nanocrystalline films to a highly (111) textured multilayers, and the maximum hardness was obtained for epitaxially coherent nanolayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Yashar, Ph.C., Sproul, W.D., Vacuum 55 (1999) 179190.Google Scholar
[2] Bain, J. A., Chyung, L. J., Brennan, S., Clemens, B. M., Physical Review B 44 (1991) 1184.Google Scholar
[3] Madan, A., Kim, I.W., Cheng, S.C., Yachar, P., Barnett, S.A., Phys. Rev. Lett. 78 (1997) 1743.Google Scholar
[4] Xu, J., Kamiko, M., Zhou, Y., Yamamoto, R., Li, G., Gu, M., J. Appl. Phys. 89 (2001) 3674.Google Scholar
[5] Schuster, E., Keune, W., Reuter, D., Westerholt, K., Superl. Microstruct. 37 (2005) 313.Google Scholar
[6] Wiesendanger, R., Bode, M., Solide State Communications 119 (2001) 341 - 355.Google Scholar
[7] Lewis, D.B., Luo, Q., Hovsepian, P.Eh., Munz, W.-D., Surf. Coat. Technol. 184 (2004) 225.Google Scholar
[8] Li, G., Lao, J., Tian, J., Han, Z., Gu, M., J. Appl. Phys. 95 (2004) 92.Google Scholar
[9] PalDey, S., Deevi, S.C., Mat. Sci. Eng. A 342 (2003) 5879.Google Scholar
[10] Boutos, T. V., Sanjines, R., Karimi, A., Surf. Coat. Technol. 188–189 (2004) 409.Google Scholar
[11] Jindal, P.C., Santhanam, A.T., Shuster, A.F., Int. J. Ref. Met. Mater. 17 (1999) 163170.Google Scholar
[12] Ueno, M., Onodera, A., Physical Review B 45 (1992) 10123 – 10126.Google Scholar
[13] Ersen, O., Tuilier, M.-H., Gergaud, P., Lagarde, P., Appl. Phys. Let. 83 (2003) 3659.Google Scholar
[14] Pankov, V., Evstigneev, M., Prince, R.H., J. Appl. Phys. Vol. 32 No. 8 (2002) 4255.Google Scholar
[15] Kato, M., Mori, T., Schwartz, L.H., Acta Metall. 28 (1980) 285.Google Scholar
[16] Koehler, J. S., Phys. Rev. B 2 (1970) 547.Google Scholar
[17] Wang, Y. Y., Wong, M. S., Rechner, J., Sproul, W. D., J. Vac. Sci. Technol. A 16(1998) 3341.Google Scholar