Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T01:20:23.634Z Has data issue: false hasContentIssue false

Formation of In-Cu Pairs in Silicon During Chemomechanical Polishing

Published online by Cambridge University Press:  25 February 2011

R. Keller
Affiliation:
Fakultät für Physik, Universität Konstaπz, D 7750 Konstanz, FRG
M. Deicher
Affiliation:
Fakultät für Physik, Universität Konstaπz, D 7750 Konstanz, FRG
W. Pfeiffer
Affiliation:
Fakultät für Physik, Universität Konstaπz, D 7750 Konstanz, FRG
H. Skudlik
Affiliation:
Fakultät für Physik, Universität Konstaπz, D 7750 Konstanz, FRG
D. Steiner
Affiliation:
Fakultät für Physik, Universität Konstaπz, D 7750 Konstanz, FRG
Get access

Abstract

Using the perturbed γγ angular correlation technique (PAC) the pairing of Cu with the radioactive acceptor atom 111In in Si is detected. Because of the identity of the electric field gradients the so-called X defect, observed after chemomechanical polishing of Si wafers and known of neutralizing acceptor atoms in Si, is identified as a Cu atom. It is also shown that as-delivered Si wafers already contain Cu atoms which neutralize acceptor atoms if the wafers are annealed at 1173 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pearton, S.J., Corbett, J.W. and Shi, T.S., Appl. Phys. A 43, 153 (1987).Google Scholar
2 Schnegg, A., Prigge, H., Grundner, M., Hahn, P.O. and Jacob, H., Mat. Res. Soc. Symp. Proc. 104, 291 (1988).Google Scholar
3 Schnegg, A., Grundner, M. and Jabob, H., in: Semiconductor Silicon 1986, ed. Huff, H.R., Abe, T. and Kolbesen, B. (Electrochemical Society, Pennington, N.J., 1986) p. 198.Google Scholar
4 Deicher, M., Grübel, G., Keller, R., Recknagel, E., Schulz, N., Skudlik, H., Wichert, Th., Prigge, H. and Schnegg, A., Inst. Phys. Conf. Ser. No. 95 , 155 (1989).Google Scholar
5 Wichert, Th., Deicher, M., Grübel, G., Keller, R., Schulz, N. and Skudlik, H., Appl. Phys. A 48, 59 (1989).Google Scholar
6 Reislöhner, U., Deubler, S., Dohlus, P., Forkel, D., Pensl, G., Plank, H., Wolf, H. and Witthuhn, W., in: Proceedings of the E-MRS-Europe 1989 Straßbourg Meeting, Symposium B, in press.Google Scholar
7 Keller, R., Deicher, M., Pfeiffer, W., Skudlik, H., Steiner, D. and Wichert, Th., to be published.Google Scholar
8 Prigge, H., Gerlach, P., Hahn, P.O. and Schnegg, A., Proc. 89, Electrochemical Society 1989, p. 372.Google Scholar
9 Estreicher, S.K., to be published.Google Scholar
10 Zundel, T., Weber, J., Benson, B., Hahn, P.O., Schnegg, A. and Prigge, H., Appl. Phys. Lett. 53, 1426 (1988).Google Scholar
11 Hall, R.N. and Racette, J.H., J. Appl. Phys. 35, 379 (1964).Google Scholar
12 Reiss, H., Fuller, C. and Morin, J.F., Bell System Tech. J. 35, 535 (1956).Google Scholar
13 Prescha, Th., Zundel, T., Weber, J., Prigge, H. and Gerlach, P., in: Proceedings of the E-MRS-Europe 1989 Straßbourg Meeting, Symposium B, in press.Google Scholar
14 Weber, E.R., Appl. Phys. A 30, 1 (1983).Google Scholar
15 Forkel, D., Deubler, S., Reislöhner, U., Spörl, K., Witthuhn, W. and Wolf, H., Materials Science Forum 38–41, 1251 (1989).Google Scholar