Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-14T16:47:02.244Z Has data issue: false hasContentIssue false

Formation of Silicon Nanocrystallites by Electron Cyclotron Resonance Chemical Vapor Deposition and Ion Beam Assisted Electron Beam Deposition

Published online by Cambridge University Press:  10 February 2011

Eun Kyu Kim
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O.Box 131, Cheongryang, Seoul 130-650, Korea, ekkim@kistmail.kist.re.kr
Won Chel Choi
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O.Box 131, Cheongryang, Seoul 130-650, Korea, ekkim@kistmail.kist.re.kr Department of Physics, Sung Kyun Kwan University, 300 Chun Chun Dong, Suwon 440-740, Korea
Suk-Ki Min
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O.Box 131, Cheongryang, Seoul 130-650, Korea, ekkim@kistmail.kist.re.kr
Chong-Yun Park
Affiliation:
Department of Physics, Sung Kyun Kwan University, 300 Chun Chun Dong, Suwon 440-740, Korea
Get access

Abstract

Nano-crystalline silicon (nc-Si) thin films were directly deposited by electron cyclotron resonance chemical vapor deposition (ECR-CVD) and ion beam assisted electron beam deposition (IBAED) method. In the sample deposited by ECR-CVD, the room temperature photoluminescence originated from the nc-Si and the silicon-hydrogen bond were appeared. It was confirmed that the size of the nc-Si could be controlled up to about 3 nm with the low substrate temperature during the deposition process and then the hydrogen atoms play a very important role in the formation of the nc-Si. The IBAED method was also found to an useful technique for nc-Si formation by the control of ion beam power.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Qin, G. G., Li, A. P., and Zhang, Y. X., Phys. Rev. B 54, P. 11122 (1996)Google Scholar
2. Tsybeskov, L., Moor, K. L., Duttagupta, S. P., Hirschman, K. D., Hall, D. G., and Fauchet, P. M., Appl. Phys. Lett. 69, 3411 (1996)Google Scholar
3. Hischman, K. D., Tsybeskov, L., Duttagupta, S. P., and Fauchet, P. M., Nature 384, 338 (1996)Google Scholar
4. Saunders, W. A., Sercel, P. C., Lee, R. B., Atwater, H. A., Vahala, K. J., Flaga, R. C., and Escorcia-Aparcio, E. J., Appl. Phys. Lett. 65, 1814 (1994)Google Scholar
5. Yoshida, T., Takeyama, S., Yamada, Y., and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996)Google Scholar
6. Choi, W. C., Lee, M.-S., Kim, E. K., Kim, C. K., Min, S.-K., Park, C.-Y., and Lee, J. Y., Appl. Phys. Lett. 69, 3402 (1996)Google Scholar
7. Tanenbaum, D. M., Laracuente, A. L., and Gallagher, Alan, Appl. Phys. Lett. 68, 1705 (1996)Google Scholar
8. Choi, W. C., Kim, E. K., Min, S.-K., Park, C.-Y., Kim, J. H., and Seong, T.-Y., Appl. Phys. Lett. 70, 3014 (1997)Google Scholar
9. Wang, L. W. and Zunger, A., J. Phys. Chem. 98, 2158 (1994)Google Scholar
10. Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, 11024 (1993)Google Scholar
11. Zhao, X., Schoenfeld, O., Komuro, S., Aoyagi, Y., and Sugano, T., Phys. Rev. B 50, 18654 (1994)Google Scholar