Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-13T14:16:09.046Z Has data issue: false hasContentIssue false

Formation Of Spinel Iron Oxide In Solution

Published online by Cambridge University Press:  28 February 2011

Jean Pierre Jolivet
Affiliation:
Chimie de la Matière Condensée, CNRS URA 302, Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05 France.
Elisabeth Tronc
Affiliation:
Chimie de la Matière Condensée, CNRS URA 302, Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05 France.
Philippe Belleville
Affiliation:
Chimie de la Matière Condensée, CNRS URA 302, Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05 France.
Jacques Livage
Affiliation:
Chimie de la Matière Condensée, CNRS URA 302, Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05 France.
Get access

Abstract

The alkalizing of aqueous mixtures Fe111 + xFe11 has been investigated at pH ≈ 8 for 0≤x≤0.5. Three composition zones have been observed. At x<O.l goethite was the only stable product. At 0.1≤x≤0.25 the early stage, characterized as mixed-valent protoferrihydrite, spontaneously transformed into nonstoichiometric magnetite. At x>0.25 the system, made of spinel particles, was homogeneous during all the evolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Misawa, T., Hashimoto, K. and Shimodaira, S., Corros. Sci. 14, 131 (1974)Google Scholar
2. Tamaura, Y., Ito, K. and Katsura, T., J. Chem. Soc. Dalton 1983, 189 Google Scholar
3. Taylor, R.M. and Schwertmann, U., Clay Miner. 10, 299 (1974)Google Scholar
4. Chukhrov, F.V., Zvyagin, B.B., Ermilova, L.P. and Gorshkov, A.I., Proc. Int. Clay Conf. Madrid 1, 397 (1972)Google Scholar
5. Cornell, R.M. and Schneider, W., Polyhedron 8, 149 (1989)Google Scholar
6. Massart, R. and Cabuil, V., J. Chim. Phys. 84, 967 (1987)Google Scholar
7. Nunes Filho, E., Conforto, E. and Rechenberg, H.R., J. Magn. Magn. Mater. 74, 125 (1988)Google Scholar
8. Coey, J.M.D. and Readman, P.W., Earth Planet. Sci. Lett. 21, 45 (1973)Google Scholar
9. Rodmacq, B., J. Phys. Chem. Solids 45, 1119 (1984)Google Scholar
10. Murad, E., Bowen, L.H., Long, G.J. and Quin, T.G., Clay Miner. 23, 161 (1988)Google Scholar
11. Murad, E. and Schwertmann, U., Amer. Miner. 65, 1044 (1980)Google Scholar
12. Childs, C.W. and Johnston, J.H., Aust. J. Soil. Res. 18, 245 (1980)Google Scholar
13. Eckert, H., in Mössbauer Spectroscopy Applied to Inorganic Chemistry, edited by Long, G.J. (Plenum Press, 1987) vol.2, p. 125 Google Scholar
14. Cornell, R.M., Clay Miner. 23, 333 (1988)Google Scholar
15. Jolivet, J.P. and Tronc, E., J. Colloid Interface Sci. 125, 688 (1988)Google Scholar
16. Tronc, E., Jolivet, J.P., Belleville, P. and Livage, J., Hyperf. Int. 46, 637 (1989).Google Scholar