Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T03:14:25.632Z Has data issue: false hasContentIssue false

Formation of Titanium Nitride/Silicide Bilayers by Rapid Thermal Anneal in Nitrogen

Published online by Cambridge University Press:  26 February 2011

A. E. Morgan
Affiliation:
Philips Research Laboratories Sunnyvale, Signetics Corp., 811 E. Arques, Sunnyvale, CA 94088-3409
E. K. Broadbent
Affiliation:
Philips Research Laboratories Sunnyvale, Signetics Corp., 811 E. Arques, Sunnyvale, CA 94088-3409
A. H. Reader
Affiliation:
Philips Research Laboratories Sunnyvale, Signetics Corp., 811 E. Arques, Sunnyvale, CA 94088-3409
Get access

Abstract

Sputter deposited Ti films on Si and SiO2 substrates have been rapid thermal annealed in N2 at temperatures of 400–1100°C, and the reaction followed using AES, TEM, electron diffraction and sheet resistance measurements. The Ti initially becomes contaminated with oxygen before being nitrided at the surface and silicided at the interface. The oxygen is expelled from the siuicide and a TiNxO1−x/TiSix bilayer eventually results. With Si substrates, TiNxO1−x is much the thinner layer whereas the reverse is true on SiO2. Extended annealing in N2 completely converts the TiSi2 layer on Si into TiN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Osburn, C.M., Tsai, M.Y., Roberts, S., Lucchese, C.J., and Ting, C.Y., in VLSI Science and Technology/1982, edited by Dell'Oca, C.J. and Bullis, W. Murray (Electrochemical Society, Pennington N.J., 1982), pp. 213223.Google Scholar
2. Alperin, M.E., Holloway, T.C., Haken, R.A., Gosmeyer, C.D., Karnaugh, R.V., and Parmantie, W.D., IEEE Trans. Electron Devices ED–32, 141 (1985).Google Scholar
3. Ting, C.Y., Wittmer, M., Iyer, S.S., and Brodsky, S.B., J. Electrochem. Soc. 131, 2934(1984).Google Scholar
4. Iyer, S.S., Ting, C.Y., and Fryer, P.M., J. Electrochem. Soc. 132, 2240 (1985).Google Scholar
5. Okamoto, T., Tsukamoto, K., Shimizu, M., and Matsukdwa, T., J. Appl. Phys. 57, 5251(1985).Google Scholar
6. Rosser, P.J. and Tomkins, G.J., Mat. Res. Soc. Symp. Proc. 35, 457 (1985).CrossRefGoogle Scholar
7. Maex, K. and De Keersmaecker, R.F., Mat. Res. Soc. Symp. Proc. 45, 153(1985).Google Scholar
8. Nemanich, R.J., Fulks, R.T., Stafford, B.L., and Plas, H.A. Vander, J. Vac. Scd. Technol. A3, 938(1985).Google Scholar
9. Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240(1984).Google Scholar
10. Delfino, M., Broadbent, E.K., Morgan, A.E., Burrow, B.J. and Norcott, M.H., IEEE Electron Device Lett. EDL–6, 591(1985).CrossRefGoogle Scholar
11. Rosser, P.J. and Tomkins, G.J., Mat. Res. Soc. Symp. Proc. 37, 607(1985).Google Scholar