Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-30T06:23:42.685Z Has data issue: false hasContentIssue false

Formation, Oxidation and Alteration of Ianthinite

Published online by Cambridge University Press:  25 February 2011

Robert J. Finch
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico Albuquerque, New Mexico 87131 U.S.A.
Rodney C. Ewing
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico Albuquerque, New Mexico 87131 U.S.A.
Get access

Abstract

Ianthinite, UO2.86·1.5H2O, is a weathering product of uraninite, UO2+x, and has been reported as a corrosion product of UO2. Ianthinite alters to schoepite, UO3·2H2O, or studtite, UO4·2-4H2O, in water. The structures of ianthinite, schoepite and studtite are unknown, but their unit cell parameters differ significantly, and transformations are likely reconstructive.

XRD powder data for ianthinite and becquerelite are similar, and they are probably iso-structural; U4+, as U(OH)22+, replaces Ca2+ in the interlayer. The proposed formula is

U(OH)22+[(UO2)6O4(OH)6]·6H2O.

Oxidation in air, has been reported to form schoepite; however, in the absence of water, the oxidation of ianthinite,

U(OH)22+[(UO2)6O4(OH)6]·6H2O + 1/2 O2 => (UO2)2+[(UO2)6O4(OH)6]·7H2O ,

shows that epi-ianthinite is structurally distinct from schoepite. The oxidation of fine-grained material is rapid, and the color change — from dark purple to yellow — is dramatic. The acicular habit of ianthinite is preserved during oxidation, and acicular “schoepite” is observed in nature, as well as in leaching experiments on spent fuel. Possible substitution of Pu4+ for U4+ suggests that Pu-ianthinite may control Pu solubility in oxidizing, U-saturated solutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 JANECZEK, J. and EWING, R., J. Nucl. Mater. 190, 128 (1992).CrossRefGoogle Scholar
2 FINCH, R. and EWING, R., SKB Technical Report TR91-15 (Swedish Nuclear Fuel and Waste Management Co., Stockholm, 1990).Google Scholar
3 FRONDEL, C., U.S. Geol. Soc. Bulletin 1064 (1958) p. 400.Google Scholar
4 GRAMBOW, B., SKB Technical Report TR89-13 (Swedish Nuclear Fuel and Waste Management Co., Stockholm, 1989).Google Scholar
5 FORSYTH, R. and WERME, L., J. Nucl. Mater. 190, 3 (1992).CrossRefGoogle Scholar
6 LESLIE, B., PEARCY, E. and PRIKRYL, J., in Scientific Basis for Nuclear Waste Management XVI, edited by Interante, C.G. and Pabalan, R.T. (Mater. Res. Soc. Proc. 294, Pittsburgh, PA, 1993) pp. 505512.Google Scholar
7 GUILLEMIN, C. and PROTAS, J., Bull. Soc. Franç. Minéral. Cristallogr. 82, 80 (1959).CrossRefGoogle Scholar
8 TAYLOR, P., WOOD, D., DUCLOS, A., OWEN, D., J. Nucl. Mater. 168, 70 (1989).CrossRefGoogle Scholar
9 SCHOEP, A., Natuurk. Tijdschr. Ned.-Indië. 7,7 (1926).Google Scholar
10 SCHOEP, A., Mus. Congo Beige Annales, ser. 1, tome 1, fasc. 3, 25 (1930).Google Scholar
11 BIGNAND, C., Bull. Soc. Franç. Minéral. Cristallogr. 74, 1 (1955).Google Scholar
12 CORDFUNKE, E., PRINS, G. and VAN VLAANDEREN, P., J. Inorg. Nucl. Chem. 30, 1745 (1968).CrossRefGoogle Scholar
13 FLEISCHER, M. and MANDARINO, J.A., Glossary of Mineral Species 1991 (The Mineralogical Record, Tucson) (1991) p. 256.Google Scholar
14 DELIENS, M., PIRET, P. and COMBLAIN, G., Les Minéraux Secondaires d’Uranium du Zaïre (Musée Royal de l’Afrique centrale, Tervuren, 1981) p. 113.Google Scholar
15 HOEKSTRA, H. and SIEGEL, S., J. Inorg. Nucl. Chem. 35, 761 (1973).CrossRefGoogle Scholar
16 CHRIST, C. and CLARK, J., Amer. Miner. 45, 1026 (1960).Google Scholar
17 SCHOEP, A. and STRADIOT, S., Amer. Mineral. 32, 344 (1947).Google Scholar
18 FRONDEL, J.W. and CUTTITA, F., Amer. Mineral. 39, 1018 (1953).Google Scholar
19 SMITH, D., in: Uranium Geochemistry, Mineralogy, Geology, Exploration, and Resources, edited by DeVivo, B., Ippolito, F., Capaldi, G., Simpson, P. (Institute of Mining and Metallurgy, London, 1984) pp. 43.CrossRefGoogle Scholar
20 FINCH, R., MILLER, M. and EWING, R., Radiochim.Acta 58/59, 433 (1992).CrossRefGoogle Scholar
21 NICKEL, E. and NICHOLS, M., Mineral Reference Manual (Van Norstrand Reinhold, New York, 1991) p. 250.CrossRefGoogle Scholar
22 PAGOAGA, M., Ph.D. Thesis, University of Maryland, 1983. p. 160.Google Scholar
23 PAGOAGA, M., APPLEMAN, D. and STEWART, J., Amer. Mineral. 72, 1230 (1987).Google Scholar
24 PIRET-MUENIER, J. and PIRET, P., Bull. Minéral. 105, 606 (1982).CrossRefGoogle Scholar
25 DELIENS, M., PIRET, P. and COMBLAIN, G., Les Minéraux Secondaires d’Uranium du Zaïre, Complement (Musée Royal de l’Afrique centrale, Tervuren, 1984) p. 39 Google Scholar
26 BILLIET, V. B and DE JONG, W., Natuurk. Tijdschr. Ned.-Indië. 17, 157 (1935).Google Scholar
27 PROTAS, J., Compte Rendus, Acad. Sci., Paris 244, 91 (1957).Google Scholar
28 SHANNON, R. and PREWITT, C., Acta Crystallogr. B26, 1046 (1970).CrossRefGoogle Scholar
29 WANNER, H. and FOREST, I. (editors) Chemical Thermodynamics of Uranium (Chemical Thermodynamics, vol. 1, North-Holland, Amsterdam, 1992) p. 715.Google Scholar
30 HUNSBERGER, J., in Handbook of Chemistry and Physics, 63rd Edition, edited by Weast, R. and Astle, M. (CRC Press, Boca Raton, 1982) pp. D·162D·167.Google Scholar
31 SHRIVER, D., ATKINS, P. and LANGFORD, C., Inorganic Chemistry (W.H. Freeman and Co., New York, 1990) p. 706.Google Scholar
32 DEBETS, P.G. and LOOPSTRA, B.O., J. Inorg. Nucl. Chem. 25, 945 (1963).CrossRefGoogle Scholar
33 SHOESMITH, D. and SUNDER, S., J. Nucl. Mater. 190, 20 (1992).CrossRefGoogle Scholar