Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T01:00:56.292Z Has data issue: false hasContentIssue false

Fundamental Issues in the Sintering of Ceramic Particulate Composites

Published online by Cambridge University Press:  25 February 2011

Mohamed N. Rahaman*
Affiliation:
University of Missouri-Rolla, Department of Ceramic Engineering, Rolla, Missouri 65401
Get access

Abstract

The sintering rate of a ceramic powder matrix can be reduced significantly by the presence of rigid inclusions. The factors that lead to this reduced sinterability have been the subject of much debate in the last 5–10 years. Recent work indicate that the reduction in the matrix sinterability is a processing-related problem. The main factors that control the sinterability of ceramic particulate composites include the packing of the matrix immediately surrounding the inclusions and interactions between the inclusions which constrain the matrix. A processing method which avoids the difficulties associated with these two factors is outlined. The method involves the synthesis of coated inclusion particles. Composites containing up to 40 volume percent inclusions can be freely sintered in the solid state to full density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jonghe, L. C. De, Rahaman, M. N., and Hsueh, C. H., Acta metall., 34 (7), 14671471 (1986).Google Scholar
2. Bordia, R. K. and Raj, R., J. Am. Ceram. Soc., 71 (4), 302310 (1988).CrossRefGoogle Scholar
3. Tuan, W. H., Gilbart, E., and Brook, R. J., J. Mater. Sci., 24, 10621068 (1989).Google Scholar
4. Raj, R. and Bordia, R. K., Acta metall., 32 (7), 10031019 (1984).Google Scholar
5. Hsueh, C. H., Evans, A. G., Cannon, R. M., and Brook, R. J., Actametall., 34 (5) 927936 (1986).Google Scholar
6. Lange, F. F., Acta metall., 37 (2), 697704 (1989).Google Scholar
7. Lange, F. F., J. Mater. Res., 2 (1), 5965 (1987).Google Scholar
8. Weiser, M. W. and Jonghe, L. C. De, J. Am. Ceram. Soc., 71 (3),C125–C127 (1988).Google Scholar
9. Bordia, R. K. and Scherer, G. W., Acta metall., 36 (9), 24112416 (1988).Google Scholar
10. Scherer, G. W., J. Am. Ceram. Soc., 70 (10), 719725 (1987).Google Scholar
11. Jonghe, L. C. De and Rahaman, M. N., Acta metall., 36 (1), 223229 (1988).Google Scholar
12. Fan, C-L. and Rahaman, M. N., J. Am. Ceram. Soc., submitted.Google Scholar
13. Rahaman, M. N. and Jonghe, L. C. De, J. Am. Ceram. Soc., 74 (2)433436 (1991).Google Scholar
14. Dutton, R. E. and Rahaman, M. N., J. Am. Ceram. Soc., submitted.Google Scholar
15. Sparks, R. E., pp. 470495 in Encyclooedia of chemical Technology, Vol. 15, edited by Grayson, M. and Eckroth, D.. (Wiley, NY, 1981).Google Scholar
16. Garg, A. K. and Matijevic, E., Langmuir, 4, 3844 (1988).Google Scholar
17. Garg, A. K. and Jonghe, L. C. De, J. Mater. Res., 5 [1], 136142 (1990).Google Scholar
18. Kapolnek, D. and Jonghe, L. C. De, J. European Ceram. Soc., in press.Google Scholar
19. Okamura, H., Barringer, E.A., and Bowen, H. K., J. Am. Ceram. Soc., 69 [2], C22–C24 (1986).Google Scholar
20. Sacks, M. D., Bozkurt, N., and Scheiffele, G. W., J. Am. Ceram. Soc., 74 [10] 24282437 (1991).Google Scholar
21. Hu, C-L. and Rahaman, M. N., J. Am. Ceram. Soc., submitted.Google Scholar