Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-25T04:53:53.886Z Has data issue: false hasContentIssue false

GaInP Selective Area Epitaxy for Heterojunction Bipolar Transistor Applications

Published online by Cambridge University Press:  03 September 2012

S. H. PARK
Affiliation:
Department of ECE, University of California, San Diego, La Jolla, CA 92096.
S.-L. FU
Affiliation:
Department of ECE, University of California, San Diego, La Jolla, CA 92096.
P. K. L. YU
Affiliation:
Department of ECE, University of California, San Diego, La Jolla, CA 92096.
P. M. ASBECK
Affiliation:
Department of ECE, University of California, San Diego, La Jolla, CA 92096.
Get access

Abstract

A study of selective area epitaxy (SAE) of GalnP lattice matched to GaAs is presented. The selectively regrown GaInP is used as the emitter of a novel heterojunction bipolar transistor (HBT) device structure. Successful SAE of GalnP on both dark field (mostly covered) and light field (mostly open) SiO2 masks is compared. To characterize the critical regrown heterojunction, diodes and HBTs were fabricated and measured. It is found that a pre-growth pause of either TEGa or PH3 results in forward bias characteristics with low leakage and an ideality factor of ~1.25, indicating low interfacial defect density. Non-self aligned regrown emitter HBTs grown with a dark field mask scheme have been fabricated. Devices with an emitter area of 3x12 μm exhibit small signal current gain up to 80 with an fT and fMAX of 22 GHz and 18 GHz, respectively. To further improve the performance of these devices, a structure with a self-aligned refractory metal base contact and light field regrowth is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Asbeck, P. M., High-Speed Semiconductor Devices,edited by Sze, S. M. (Wiley-Intersciences, New York, 1990), p.389 Google Scholar
2 Chand, N., Fischer, R., Henderson, T., Morkoc, H., and Neugroschel, A., Appl. Phys. Lett. 48, (5) 367369, 1986.Google Scholar
3 Tiwari, S., Frank, D. J., and Wright, S. L., J. Appl. Phys. 64, (10) 50095012, 1988.Google Scholar
4 Mochizuki, K., Masuda, H., Kawata, M., Mitani, K., Kusano, C., Japanese J. Appl. Phys. 30, (2B), L266L268, 1991.Google Scholar
5 Liu, W., Costa, D., and Harris, J. Jr., Solid-State Electronics 34, (10) 11191123, 1991.Google Scholar
6 Lin, H. H. and Lee, S.-C., Appl. Phys. Lett., 47 (8), 839841, 1985.Google Scholar
7 Malik, R. J., Lunardi, L. M., Ryan, R. W., Shunk, S. C., and Feuer, M. D., Elec. Lett. 25 (17), 11751177, 1989.Google Scholar
8 Hayama, N., and Honjo, K., IEEE Dev. Lett. 11 (9), 388390, 1990.Google Scholar
9 Yang, Y.-F., Hsu, C.-C., and Yang, E. S., 54th Annual Device Research Conference Digest, p.54 1996.Google Scholar
10 Dai, C., Liu, W., Massengale, A., Kameyama, A., Harris, J. Jr., 52nd Annual Device Research Conference Digest 52, paper IVB-1, 1994.Google Scholar
11 Miyamoto, Y., Dentai, A. G., Rios, J. M. M., and Chandresekhar, S., Elec. Lett. 31 (17), 15101511, 1995.Google Scholar
12 Miyamoto, Y., Dentai, A. G., Rios, J. M. M., and Chandresekhar, S., Elec. Lett. 31 (17), 15101511, 1995.Google Scholar
13 Amamiya, Y., Kim, C.-W., Goto, N., Tanaka, S., Furuhata, N., Shimawaki, H., and Honjo, K., International Electron Devices Meeting Technical Digest, 199202, 1994.Google Scholar
14 Hamm, R. A., Feygenson, A., Ritter, D., Wang, Y. L., Temkin, H., Yadvish, R. D., and Panish, M. B., Appl. Phys. Lett. 61 (5), 592594, 1992.Google Scholar
15 Tanoue, T., Masuda, H., Washio, K., and Nakamura, T., International Electron Devices Meeting Technical Digest, 8790, 1992.Google Scholar
16 Liu, W., Kim, T., Khatibzadeh, A., International Journal of High Speed Electronics and Systems 5, (3) 411471, 1994.Google Scholar
17 Krynicki, K., Zaidi, M. A., and Bourgoin, J. C., J. Appl. Phys. 74, (1), 260266, 1993.Google Scholar
18 Costa, D., and Harris, J., IEEE Trans. El. Dev. 39, 23832394, 1992.Google Scholar
19 Chang, J. S. C., Carey, K. W., Turner, J. E., and Hodge, L. A., J. Elec. Mat. 19 (4), 345348, 1990.Google Scholar
20 Thompson, J., Wood, A. K., Carr, N., Charles, P. M., Mosely, A. J., Pritchard, R., Hamilton, B., Chew, A., Sykes, D. E., and Seong, T.-Y., J. of Cryst. Growth 124, 227234, 1992.Google Scholar
21 Galeuchet, Y. D., Roentgen, P., and Graf, V., J. Appl. Phys. 68(2), 560568, 1990.Google Scholar
22 Caneau, C., Bhat, R., Frei, M. R., Chang, C. C., Deri, R. J., and Koza, M. A., J. of Cryst. Growth 124, 243248, 1992.Google Scholar
23 Nakashiba, H., Ishida, I., Aomura, K., Nakamura, T., IEEE Trans. El. Devices 27, 13901394, 1980.Google Scholar
24 Tang, D. D., Solomon, P. M., Ning, T. H., Isaac, R. D., Burger, R. E., IEEE J. Solid-State Circuits 17, 925931, 1982.Google Scholar
25 Fu, S. L., Park, S. H., Hsin, Y. M., Ho, M. C., Chin, T. P., Yu, P. K. L., Tu, C. W., Asbeck, P. M., Nakamura, T., 52nd Annual Device Research Conference Digest, paper IVB-2, 1994.Google Scholar
26 Jiang, X. S., Clawson, A. R., and Yu, P. K. L., J. of Cryst. Growth 124, 547552, 1990.Google Scholar
27 Bhat, R., JJ. of Cryst. Growth 120, 362368, 1992.Google Scholar
28 Gibbon, M., Stagg, J. P., Cureton, C. G., Thrush, E. J., Jones, C. J., Mallard, R. E., Pritchard, R. E., Collis, N., and Chew, A., Semicond. Sci. Technol., 8, 9981010, 1993.Google Scholar
29 Maassen, M., Kayser, O., Westphalen, R., Guimares, F. E. G., Geurts, J., Finders, J., and Balk, P., J. of Elec. Mat. 21 (3), 257264, 1992.Google Scholar
30 Nittono, T., Sugitani, S., and Hyuga, F., J. Appl. Phys. 78, 53875390, 1995.Google Scholar