Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-14T20:09:53.862Z Has data issue: false hasContentIssue false

Gas Permeation and Microstructure of Silica Membranes Prepared Using an Organic Template Approach by Sol-Gel Processing

Published online by Cambridge University Press:  10 February 2011

G. Z. Cao
Affiliation:
Advanced Materials Laboratory, University of New Mexico and Sandia National Laboratories, 1001 University Blvd. SE, Albuquerque, NM 87106
C. J. Brinker
Affiliation:
Advanced Materials Laboratory, University of New Mexico and Sandia National Laboratories, 1001 University Blvd. SE, Albuquerque, NM 87106
Get access

Abstract

This paper investigates microporous amorphous silica membranes prepared using an organic template sol-gel approach. We find that the introduction of organic methacryloxypropyl ligands results in a reduced average condensation rate and a lower extent of branching that promotes the collapse of the hybrid network upon drying leading to relatively dense hybrid organic-inorganic xerogels and films. Microporous silica xerogels and membranes, prepared by oxidative pyrolysis of the organic templates at 300 °C for 5 hours in oxygen, contained pores with constrictions of approximately 0.35 nm in diameter with a very narrow size distribution, as evidenced by single gas permeation measurements of a series of probe molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bhave, R. (ed.), Inorganic Membranes: Synthesis, Characterization and Properties, Van Nostrand Reinhold, New York, NY, 1991.Google Scholar
2. Brinker, C.J. and Scherer, G.W., Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, CA, 1990.Google Scholar
3. Leenaars, A.F.M. and Burggraaf, A.J., J. Colloid Interface Sci., 105, 27 (1985).Google Scholar
4. Brinker, C.J., Sehgal, R., Hietala, S.L., Deshpande, R., Smith, D.M., Loy, D. and Ashley, C.S., J. Membrane Sci., 94, 85 (1994).Google Scholar
5. de Lange, R.S.A., Hekkink, J.H.A., Keizer, K., Burggraaf, A.J., J. Membrane Science, 99, 57 (1995).Google Scholar
6. de Lange, R.S.A., Hekkink, J.H.A., Keizer, K., Burggraaf, A.J., J. Microporous Materials, 4, 169 (1995).Google Scholar
7. Sehgal, R., Huling, J.C., and Brinker, C.J., in Proceedings of the Third International Conference on Inorganic Membranes (1CIM3), ed. Ma, Y.H., Worcester, MA, 1995, p. 557Google Scholar
8. Samuel, J. and Brinker, C.J., this proceedings.Google Scholar
9. Raman, N.K. and Brinker, C.J., J. Membrane Sci., 105, 273 (1995).Google Scholar
10. Cao, G.Z., Lu, Y.F., Delattre, L., Brinker, C.J. and Lopez, G.L., Advanced Materials, in press.Google Scholar
11. Brinker, C.J., Raman, N.K., Logan, M.N., Sehgal, R., Assink, R.-A., Hua, D.-W. and Ward, T.L., J. Sol- Gel Sci. Tech., 4, 117 (1995).Google Scholar
12. Brinker, C.J., Ward, T.L., Sehgal, R., Raman, N.K., Hietala, S.L., Smith, D.M., Hua, D.-W. and Headley, T.J., J. Membrane Sci., 77, 165 (1993).Google Scholar
13. Breck, D.W., Zeolite Molecular Sieves: Structure, Chemistry and Use, John Wiley & Sons, New York, NY, 1973.Google Scholar
14. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area andPorosimetry, 2nd, Academic Press, Inc., New York, NY, 1982.Google Scholar
15. Brinker, C.J., Sehgal, R., Raman, N., Schunk, P.R., and Headley, T.J., J. Sol-Gel Sci. Tech., 2, 469 (1994).Google Scholar
16. Iler, R.K., The Chemistry of Silica; Solubility, Polymerization, Colloid and Surface Properties and Biochemistry, John Wiley & Sons, New York, NY, 1979.Google Scholar
17. Coltrain, B.K., Melpolder, S.M., and Salva, J.M., in Ultrastructure Processing of Advanced Materials, eds. Uhlmann, D.R. and Ulrich, D.R., John Wiley & Sons, New York, NY, 1992, p. 6976.Google Scholar
18. Brinker, C.J., in Transformation of Organometallics into Common and Exotic Materials: Design and Activation, ed. Laine, R. M., Martinus Nijhoff Pub., Dordrecht, 1988, p.261278.Google Scholar
19. Brinker, C.J., Hurd, A.J., and Ward, K.J., in Ultrastructure Processing of Advanced Materials, eds., Mackenzie, J.D. and Ulrich, D.R., John Wiley & Sons, New York, NY, 1988, p.223240.Google Scholar
20. Barrer, R.M., J. Chem. Soc. Faraday Trans., 86, 1123 (1990).Google Scholar
21. van Bekkumn, H., Flaningen, E.M. and Jansen, J.C., Introduction to Zeolite Science and Practice,Elsevier, Amsterdam, 1991.Google Scholar
22. Karger, J. and Ruthven, D.M, Diffusion in Zeolites and Other Microporous Solids, John Wiley & Sons, New York, NY, 1992.Google Scholar
23. Lu, Y.F., Cao, G.Z., Kale, R., Lopez, G.P., and Brinker, C.J., in Better Ceramics through Chemistry VIII: Organic/Inorganic Hybrid Materials, (MRS Symp. Series 435), eds. D.W. Schaefer, G.L. Wilkes, C. Sanchez, and B. Coltrain, 1996, submitted.Google Scholar