Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T00:33:27.225Z Has data issue: false hasContentIssue false

A Grazing Incidence X-Ray Diffraction Study of Self-Assembled Monolayers

Published online by Cambridge University Press:  21 February 2011

P. Fenter
Affiliation:
Dept. of Physics, Princeton Univ., Princeton N.J. Exxon Research and Engineering, Annandale N.J.
Jun Li
Affiliation:
Dept. of Chemistry, Princeton Univ., Princeton N.J. Exxon Research and Engineering, Annandale N.J.
p. Eisenberger
Affiliation:
Dept. of Physics, Princeton Univ., Princeton N.J.
T. A. Ramanarayanan
Affiliation:
Exxon Research and Engineering, Annandale N.J.
K. S. Liang
Affiliation:
Exxon Research and Engineering, Annandale N.J.
Get access

Abstract

We describe the two dimensional structure of n-Alkyl Thiols, CH3(CH217SH(C18, self-assembled on the surfaces of Au(111) and Ag(111). By using Grazing Incidence X-ray Diffraction (GIXD), we show that C18 forms ordered and dense monolayers. Although the properties of Au and Ag are very similar (for instance, the lattice constants of Au an Ag are nearly identical), the structure of C18on these two substrates is very different.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Swalen, J. D., Aliara, D. L., Andrade, J. D., Chandross, E. A., Garoff, S., Israelachvili, J., McCarthy, T. J., Murray, R., Pease, R. F., Rabolt, J. F., Wynne, K. J., and Yu, H., Langmuir 3, 932 (1987).CrossRefGoogle Scholar
2. Whitesides, G. M., and Laibinis, P. E., Langmuir 6, 87 (1990).Google Scholar
3. Chidsey, C. E. D., Science 251, 919 (1991).Google Scholar
4. Chidsey, C. E. D., Liu, G. -Y., Rowntree, P., and Scoles, G., J. Chem. Phys. 91, 4421 (1989).CrossRefGoogle Scholar
5. Tidswell, I. M., Rabedeau, T. A., Pershan, P. S., Kosowsky, S. D., Folkers, J. P., and Whitesides, G. M., J. Chem. Phys. 95, 2854 (1991).Google Scholar
6. Strong, L., and Whitesides, G. M., Langmuir 4, 546 (1988).Google Scholar
7. Samant, M. G., Brown, C. A., and Gordon, J. G. II, Langmuir 7, 437 (1991).Google Scholar
8. Nuzzo, R. G., Korenie, E. M., and Dubois, L. H., J. Chem. Phys. 93, 767 (1990).Google Scholar
9. Walczak, M. M., Chung, C., Stole, S. M., Widrig, C. A., and Porter, M. D., J. Am. Chem. Soc. 113, 2370 (1991).Google Scholar
10. Laibinis, P. E., Whitesides, G. M., Aliara, D. L., Tao, Y.-T., Parikh, A. N., and Nuzzo, R. G., J. Amer. Chem. Soc. 113, 7152 (1991).CrossRefGoogle Scholar
11. Fuoss, P., Liang, K. S., and Eisenberger, P., to appear in Synchrotron Radiation Research Advances in Surface Science, ed. Bachrach, R. Z., Plenum Publishing Co. (1991).Google Scholar
12. Feidenhans'l, R., Surf. Sci. Reports 10, 105 (1989).Google Scholar
13. Fenter, P., Eisenberger, P., Li, J., Camillone, N. III, Bernasek, S., Scoles, G., Ramanarayanan, T. A., and Liang, K. S., Langmuir 7, 2013 (1991).Google Scholar
14. Fenter, P., et al, unpublished.Google Scholar
15. Bareman, J. P., and Klein, M. L., J. Phys. Chem. 94, 5202 (1990).Google Scholar
16. Graham, R., Whitesides, G., Science 254, 981 (1991).Google Scholar