Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T05:51:23.929Z Has data issue: false hasContentIssue false

Growth Condition Dependence Of Rheed Pattern From GaAs (111)B Surface

Published online by Cambridge University Press:  21 February 2011

K. Yang
Affiliation:
Center of Integrated Electronics and Department of Physics, Rensselaer Polytechnic Institute, Troy NY 12180
W. Li
Affiliation:
Center of Integrated Electronics and Department of Physics, Rensselaer Polytechnic Institute, Troy NY 12180
A. P. Taylor
Affiliation:
Center of Integrated Electronics and Department of Physics, Rensselaer Polytechnic Institute, Troy NY 12180
Q.-F. Xiao
Affiliation:
Department of Physics, State University of New York at Albany, Albany, NY 12222
L. J. Schowalter
Affiliation:
Center of Integrated Electronics and Department of Physics, Rensselaer Polytechnic Institute, Troy NY 12180
B. K. Laurich
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
D. L. Smith
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

A 3-dimensional phase diagram is introduced to describe the dependence of the RHEED pattern from GaAs(111)B surface on growth conditions. The 2×2, transitional(1×1), and √19×,√19 surface reconstructions correspond to different zones in the phase diagram. A equation is given for the planes that separate these zones, which fit experimental data well. Homoepitaxial films on GaAs(111)B grown in the 2×2 region generally have bad crystal quality as determined by the ion channeling, and growth in the √19×√19 region generally yields rough surface morphology. At higher substrate temperatures (∼ 650 °C), featureless films with minimum ion channeling yields of less than 4% are achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1.] Mailoit, C. and Smith, D.L., Phys. Rev. B 35, 1242 (1987)CrossRefGoogle Scholar
[2.] Laurich, B. K., Elcess, K., Fonstad, C. G., Beery, J. G., Mailiot, C., and Smith, D. L., Phys. Rev. Lett., 62 649 (1989)Google Scholar
[3.] Caridi, E. A., Chang, T. Y., Goossen, K. W., and Eastman, L. F., Appl. Phys. Lett. 56, 659 (1990)CrossRefGoogle Scholar
[4] Cho, A. Y., J. Appl. Phys. 41, 2780 (1970)Google Scholar
[5.] Sugiyama, K. J. Crystal Growth 75, 435 (1986)Google Scholar
[6.] Elcess, K., Lievin, J.-L., and Fonstad, J. Vac. Sci. Technol. B 6, 638 (1988)CrossRefGoogle Scholar
[7.] Singer, R. and Fonstad, C. G., presentation at sixth New England MBE workshop, MIT, April 16, 1991 Google Scholar
[8.] Hayakawa, T., Kondo, M., Morita, T., Takahashi, K., Suyama, T., Yamamoto, S., and Hijikata, T., Appl. Phys. Lett., 51, 1705 (1987)Google Scholar
[9.] Hayakawa, T., Kondo, M., Suyama, T., Takahashi, K., Yamamoto, S., and Hijikata, T., Jap. J. Appl. Phys. 26, L302 (1987)Google Scholar
[10.] Imamoto, H., Sato, F., Imanaka, K., and Shimura, M., Appl. Phys. Lett., 55, 115 (1989)Google Scholar
[11.] Parker, E. H. C. The Technology and Physics of Molecular Beam Epitaxy (Plenum Press, New York, 1985) Chapter 1Google Scholar
[12.] Ranke, W. and Jacobi, K. Surface. Sci., 63, 33 (1977)Google Scholar
[13.] Reithmaier, J.-P., Riechert, H. and Schlotterer, H. Contribution to the sixth International Conference on the Molecular Beam Epitaxy, San Diego, August 1990 Google Scholar
[14.] Chen, P., Rajkumar, K. C., and Madhukar, A. Appl. Phys. Lett. 58, 1771 (1991)Google Scholar