Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-14T19:14:32.781Z Has data issue: false hasContentIssue false

Growth Control And Characterization Of Wide Band Gap Silicon-Carbon Films

Published online by Cambridge University Press:  10 February 2011

S. Kerdiles
Affiliation:
Llermat-Ismra, unité CNRS 6004, 6 Bd du Maréchal Juin, F-14050 Caen Cedex, France.
R. Rizk
Affiliation:
Llermat-Ismra, unité CNRS 6004, 6 Bd du Maréchal Juin, F-14050 Caen Cedex, France.
A. Pérez-Rodríguez
Affiliation:
EME, Departament de Fisica Aplicada i Electrònica, Universitat de Barcelona, Diagonal 645-647, 08028 Barcelona, Spain.
B. Garrido
Affiliation:
EME, Departament de Fisica Aplicada i Electrònica, Universitat de Barcelona, Diagonal 645-647, 08028 Barcelona, Spain.
O. González-Varona
Affiliation:
EME, Departament de Fisica Aplicada i Electrònica, Universitat de Barcelona, Diagonal 645-647, 08028 Barcelona, Spain.
L. Calvo-Barrio
Affiliation:
Serveis Cientifico-Tècnics, Universitat de Barcelona, C. Lluis Solé Sabaris, 08028 Barcelona, Spain.
J.R. Morante
Affiliation:
EME, Departament de Fisica Aplicada i Electrònica, Universitat de Barcelona, Diagonal 645-647, 08028 Barcelona, Spain.
Get access

Abstract

Silicon-carbon films have been grown by reactive hydrogen magnetron sputtering at a substrate temperature of 730°C, with different values of carbon-to-silicon sputtered area ratio, rc. The layers were investigated by infrared spectroscopy, Raman scattering, x-ray photoelectron spectroscopy and optical absorption. For rc below 30%, almost only Si nanocrystallites were formed with a few fraction of amorphous SiC, whereas for rc exceeding 30%, a drastic change was noticed, leading to the achievement of SiC crystals in the layers. These latter were found of near-stoichiometric composition with an atomic ratio C/Si ˜1.04. The results suggest that the excess C is of graphitic-like configuration being likely located in the intergrain regions, in addition to some silicon-oxygen bonds. These features are accompanied by an abrupt widening of the band gap in the transition region that is consistent with the formation of SiC nanocrystals. The large value measured for the band gap (≥3 eV) is thought to be due to more than one origin, such as size effect of SiC, Si-O bonds and possible presence of different SiC polytypes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hwang, J.D., Fang, Y.K., Chen, K.H., and Yaung, D.N., IEEE Electron Device Lett. 16, 193 (1995).Google Scholar
2. Choi, K. and Matsumura, M., Mater. Res. Soc. Symp. Proc. 452, 933 (1997).Google Scholar
3. Kruangam, D., Toyama, T., Hattori, Y., Deguchi, M., Okamoto, H., and Hamakawa, Y., J. Non-Cryst. Solids 97&98, 293 (1987).Google Scholar
4. Cheng, K.L., Cheng, H.C., Lee, W.H., Lee, C., Liu, C.C., and Yew, T.R., Appl. Phys. Lett. 70, 223 (1997).Google Scholar
5. Takeshita, T., Kurata, Y., and Hasegawa, S., J. Appl. Phys. 71, 5395 (1992).Google Scholar
6. Wahab, Q., Glass, R.C., Ivanov, I.P., Birch, J., Sundgren, J.E., and Willander, M., J. Appl. Phys. 74, 1663 (1993).Google Scholar
7. Sun, Y., Miyasato, T., Wigmore, J.K., Sonoda, N., and Watari, Y., J. Appl. Phys. 82, 2334 (1997).Google Scholar
8. Winters, H. F., J. Chem. Phys. 63, 3462 (1975).10.1063/1.431783Google Scholar
9. Boucaud, P.,.Francis, C., Larré, A., Julien, F.H., Lourtioz, J.M., Bouchier, D., Bodnar, S., Regolini, J.L., Appl. Phys. Lett. 66, 70 (1995).10.1063/1.114186Google Scholar
10. Kimura, T., Kagiyama, S., and Yugo, S., Thin Solid Films 81, 319 (1981).Google Scholar
11. Serre, C., Calvo-Barrio, L., Pérez-Rodríguez, A., Romano-Rodríguez, A., Morante, J.R., Pacaud, Y., Kögler, R., Heera, V., and Skorupa, W., J. Appl. Phys. 79, 6907 (1996).10.1063/1.361514Google Scholar
12. Spitzer, G., Kleinman, D.A., and Walsh, D., Phys. Rev. 113, 127 (1959).10.1103/PhysRev.113.127Google Scholar
13. Macía, J., Martin, E., Pérez-Rodríguez, A., Jiménez, J., Morante, J.R., Aspar, B., and Margail, J., J. Appl. Phys. 82, 3730 (1997).10.1063/1.365735Google Scholar
14. Demichelis, F., Pinri, C.F., and Tresso, E., J. Appl. Phys. 72, 1327 (1992)Google Scholar
15. Veprek, S., Iqbal, Z., Kühne, R.O., Capezzato, P., Sarott, F.-A., and Gimzewski, J.K., J. Phys. C: Solid State Phys., 16, 6241 (1983).10.1088/0022-3719/16/32/015Google Scholar
16. A Achiq, Rizk, R., Gourbilleau, F., Madelon, R., Garrido, B., Pérez-Rodríguez, A., and Morante, JR., J. Appl. Phys. (in press).Google Scholar