Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T03:27:58.759Z Has data issue: false hasContentIssue false

Growth of Er Doped si Films by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition

Published online by Cambridge University Press:  21 February 2011

Jim L. Rogers
Affiliation:
Dept. of Electrical Engineering, University of Vermont, Burlington, VT 05405
Walter J. Varhue
Affiliation:
Dept. of Electrical Engineering, University of Vermont, Burlington, VT 05405
Edward Adams
Affiliation:
IBM Corp., Essex Junction, VT. 05452
Get access

Abstract

Thin Si films doped with Er have been grown at low temperature by plasma enhanced chemical vapor deposition. The Er gas source is a sublimed organo-metallic compound fed into the process chamber. High doping concentrations without precipitation are possible because of the low deposition temperatures. The process relies on the beneficial effects of low energy ion bombardment to reduce the growth temperature. The ions as well as reactive chemical species are produced by an electron cyclotron resonance (ECR) plasma stream source. A hydrogen plasma stream is used to perform an in-situ pre-deposition clean to remove oxide from the Si surface. Film crystallinity and impurity concentration are determined by Rutherford backscattering spectrometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsaur, B. Y., Fan, J. C. C., and Gale, R. P., Appl. Phys. Lett. 38 (3) 176 (1981).Google Scholar
2. Ennen, H., Schneider, J., Pomrenke, G. and Axmann, A., Appl. Phys. Lett. 43 (10) 943 (1983).Google Scholar
3. Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W. and Schneider, J., Appl. Phys. Lett. 46 (4) 381 (1985).Google Scholar
4. Xie, Y. H., Fitzgerald, E. A. and Mii, Y.J., J. Appl. Phys. 70 (6) 3223 (1991).Google Scholar
5. Eaglesham, D. J., Michel, J., Fitzgerald, E. A., Jacobson, D. C., Poate, J. M., Benton, J. L., Polman, A., Xie, Y.H. and Kimerling, L. C., Appl. Phys. Lett. 58 (24) 2797 (1991).Google Scholar
6. Efeoglu, H., Evans, J. H., Langer, J. M., Peaker, A. R., Rowell, N. L., Noel, J-P, Perovic, D. D., Jackman, T. E., and Houghton, D. C., Proc. of Mater. Res. Soc. (1991).Google Scholar
7. Beach, D. B., Collins, R. T., Legoues, F. K. and Chu, J. O., MRS Fall Meeting, Symp. E, Boston (1992).Google Scholar
8. Varhue, W. J., Carulli, J. M., Miller, J. and Peterson, G., J. of Appl. Phys. 71 (4) 1949 (1992).Google Scholar
9. Shibata, T. and Ohmi, T., J. of Electronic Mater. 19 (10) 1065 (1990).Google Scholar
10. Mui, D. S. L., Fang, S. F., and Morkoc, H., Appl. Phys. Lett. 59 (15) 71887 (1991).Google Scholar
11. Fukuda, K., Murota, J., Ono, S., Matsuura, T., Uetake, H. and Ohmi, T., Appl. Phys. Lett. 59 (22) 2853 (1991).Google Scholar