Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T02:28:16.027Z Has data issue: false hasContentIssue false

Growth of Solid and Hollow Nanowhiskers from Nanoscale Powders

Published online by Cambridge University Press:  15 March 2011

R.T. Malkhasyan
Affiliation:
Scientific-Production Enterprise “ATOM”, Tevosyan str. 3/1, Yerevan 375076, Armenia, rmalkhas@aua.am
R.K. Karakhanyan
Affiliation:
Scientific-Production Enterprise “ATOM”, Tevosyan str. 3/1, Yerevan 375076, Armenia, rmalkhas@aua.am
M.N. Nazaryan
Affiliation:
Scientific-Production Enterprise “ATOM”, Tevosyan str. 3/1, Yerevan 375076, Armenia, rmalkhas@aua.am
Get access

Abstract

The fast mass growth of solid and hollow nanowhiskers of MoO3 and WO3 is obtained owing to the heating of the nanoscale powders of these materials by means of electron beam. Based on our transmission electron microscopic observation the growth mechanism of the MoO3 and WO3 nanowhiskers is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Metastable Phases and Microstructures, edited by Bormann, R., Mazzone, G., Shull, R.D., Averbakh, R.S. and Ziolo, R.F. (Mater. Res. Soc. Proc. 400, Pittsburgh, PA, 1995) p.368.Google Scholar
2. Nanophase Materials, 1994. edited by Hadjypanais, G.S. and Siegel, R.W. (Kluwer Academic Publishers, Dordrecht/ Boston/ London, 1994), p.808.Google Scholar
3. Schimmel, G., Elektronenmikroskopische Methodik, (Springer-Verlag, Berlin, Heidelberg, New York, 1969) p.250.Google Scholar
4. Zamojskii, V.D., and Lousin, A.N., Dokl. AN SSSR, 224, 369 (1975).Google Scholar
5. Ugarte, D, Nature (London), 359, 707 (1992).Google Scholar
6. Heer, W.A. de and Ugarte, D., Chem.Phys. Lett., 207, 480 (1993).Google Scholar
7. Mckay, K.G., Kroto, H.W. and Wales, D.I., I.Chem. Soc. Faradey Trans. 88, 2815 (1992).Google Scholar
8. Ru, Q., Okamoto, M., Kondo, Y. and , Takayanagi, Chem.Phys. Lett. 259, 425 (1996).Google Scholar
9. Xu, B.S. and Tanaka, S-I., Proc. Annu..Meeting Scan. Soc. Electron Microsc., 49, 434 (1997).Google Scholar
10. Oku, T., Hirano, T. and Suganuma, K., J. Mater. Res. 14, 4266 (1999).Google Scholar
11. Malkhasyan, R.T, in Metastable Phases and Microstructures, edited by Bormann, R., Mazzone, G., Shull, R.D., Averbakh, R.S. and Ziolo, R.F. (Mater. Res. Soc. Proc. 400, Pittsburgh, PA, 1995)pp. 7782.Google Scholar
12. Malkhasyan, R.T. and Movsesyan, G.H., Pribory Techn. Exper. 4, 127 (1991).Google Scholar
13. Malkhasyan, R.T., Movsesyan, G.H. and Potapov, V.K, Khim. Vysok. Energii. 26, 63 (1992).Google Scholar
14. Schubert, K., Kristallstrukruren Zweikomponentiger Phase, (Springer-Verlag, Berlin, Gottingen, Heidelberg. 1964), p.485.Google Scholar
15. Iijima, S., Nature, 354, 56 (1991).Google Scholar
16. Gogotsi, Y., Libera, I.A., Kalashnikov, N. and Yoshimura, M., Science. 290, 317 (2000).Google Scholar
17. Wittaker, E.I.W., Acta Cryst. 21, 461 (1966).Google Scholar
18. Gogotsi, Y., Yaroshenko, V. and Porz, F., J.Mater. Sci., Lett., 11, 308 (1992).Google Scholar
19. Hobbs, L.W., in Introduction to Analytical Electron Microscopy, edited by Hren, et al. (Plenum, N.Y. 1997) p.437450.Google Scholar