Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-30T10:52:14.623Z Has data issue: false hasContentIssue false

Halide Vapor Phase Epitaxy of Gallium Nitride Films on Sapphire and Silicon Substrates

Published online by Cambridge University Press:  21 February 2011

N.R. Perkins
Affiliation:
University of Wisconsin, Materials Science Program, Madison, WI
M.N. Horton
Affiliation:
University of Wisconsin, Materials Science Program, Madison, WI
Z.Z. Bandic
Affiliation:
California Institute of Technology, Department of Applied Physics, Pasadena, CA
T.C. McGill
Affiliation:
California Institute of Technology, Department of Applied Physics, Pasadena, CA
T.F. Kuech
Affiliation:
University of Wisconsin, Materials Science Program, Madison, WI University of Wisconsin, Dept. of Chemical Engineering, Madison, WI
Get access

Abstract

A major limitation of the current technology for GaN epitaxy is the availability of suitable substrates matched in both lattice constant and thermal expansion coefficient. One alternative for the development of GaN substrates rests in the application of halide vapor phase epitaxy (HVPE) to produce GaN films at high growth rates. In this paper, we describe the growth of thick GaN films via the HVPE technique on (0001) sapphire and (111) Si substrates. At a temperature of 1030°C, films are grown at rates between 70 and 90 μm/hr, yielding total thicknesses exceeding 200 μm on sapphire. DCXRD measurements of GaN/sapphire indicate FWHM values less than 220 arcsec on 180 μm thick films. Room temperature PL measurements of GaN/sapphire indicate strong emission at 3.41 eV, with a FWHM value of 65 meV. Moreover, no detectable deep level emission was found in room temperature PL measurement. Under optimized conditions, films are morphologically smooth and optically clear. The GaN morphology appears to be a strong function of the initial nucleation conditions, which in turn are strongly affected by the partial pressure of GaCl. HVPE growth on (111) Si substrates is accomplished using an AlN MOVPE buffer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, p. L2112L2114 (1989).Google Scholar
2 Nakamura, S., Mukai, T., and Senoh, M., Jap. J. Appl. Phys. 30, p. L1998L2001 (1991).Google Scholar
3 Nakamura, S., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 32, p. L8L11 (1993).Google Scholar
4 Nakamurea, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, p. 16871689 (1994).Google Scholar
5 Lester, S.D., Ponce, F.A., Craford, M.G., and Steigerwald, D.A., Appl. Phys. Lett. 66, p. 12491251 (1995).Google Scholar
6 Akasaki, I., Amano, H., Kiode, Y., Hiramatus, K. and Sawaki, N., J. Crystal Growth 98, p. 209219 (1989).Google Scholar
7 Amano, H., Akasaki, I., Himamatus, K., Kiode, N. and Sawaki, N., Thin Solid Films 163, p. 415420 (1988).Google Scholar
8 Detchprohm, T., Hiramatsu, K., Sawaki, N., and Akasaki, I., J. Crystal Growth 137, p. 170174 (1994).Google Scholar
9 Detchprohm, T., Hiramatsu, K., Sawaki, N., and Akasaki, I., J. Crystal Growth 145, p. 192196 (1994).Google Scholar
10 Maruska, H. and Tietjen, J., Appl. Phys. Lett. 15, p. 327 (1969)Google Scholar
11 Detchprohm, T., Hiramatsu, K., Amano, H., and Akasaki, I., Appl. Phys. Lett 61, p. 26882690 (1992).Google Scholar
12 Lagerstedt, O. and Monemar, B., J. Appl. Phys. 45, p. 22662272 (1974).Google Scholar
13 Pankove, J.I., Berkeyheiser, J.E., and Miller, E.A., J. Appl. Phys. 45, p. 12801286 (1974).Google Scholar
14 Naniwae, U.K., Itoh, S., Amano, H., Itoh, K., Hiramatsu, K., and Akasaki, I., J. Crystal Growth 99 p. 381384 (1990).Google Scholar
15 Nikitinaand, I. Dmitriev, V., (Inst. Phys. Conf. Ser. 141, San Diego, CA, 1994), p. 431-436.Google Scholar
16 Itoh, N. and Okamoto, K., J. Appl. Phys. 63, p. 14861493 (1988).Google Scholar
17 Watanabe, A., Takeuchi, T., Hirosawa, K., Amano, H., Hiramatsu, K., and Akasaki, I., J. Crystal Growth 128, p. 391396(1993).Google Scholar
18 Meyerson, B.S., Ganin, E., Smith, D.A., and Nguyen, T.N., J. Electrochem. Soc. 133, p. 12321235 (1986).Google Scholar