Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T04:07:22.389Z Has data issue: false hasContentIssue false

Heat and mass transfer modeling for a better knowledge of the large-area growth of homoepitaxial SiC by CVD

Published online by Cambridge University Press:  21 March 2011

Michel Pons
Affiliation:
LTPCM- UMR 5614 (CNRS/INPG/UJF), Domaine Universitaire, B.P.75, F-38402 St. Martin d'Hères Cedex, France
Jerome Mezière
Affiliation:
LTPCM- UMR 5614 (CNRS/INPG/UJF), Domaine Universitaire, B.P.75, F-38402 St. Martin d'Hères Cedex, France
Jean Marc Dedulle
Affiliation:
LMGP - UMR 5628 (CNRS/INPG), Domaine Universitaire, B.P. 46, F-38402 St. Martin d'Hères Cedex, France
Elisabeth Blanquet
Affiliation:
LTPCM- UMR 5614 (CNRS/INPG/UJF), Domaine Universitaire, B.P.75, F-38402 St. Martin d'Hères Cedex, France
Claude Bernard
Affiliation:
LTPCM- UMR 5614 (CNRS/INPG/UJF), Domaine Universitaire, B.P.75, F-38402 St. Martin d'Hères Cedex, France
Pierre Ferret
Affiliation:
LETI-CEA Grenoble, 38054 Grenoble Cedex 9, France
Lea Di Cioccio
Affiliation:
LETI-CEA Grenoble, 38054 Grenoble Cedex 9, France
Thierry Billon
Affiliation:
LETI-CEA Grenoble, 38054 Grenoble Cedex 9, France
Roland Madar
Affiliation:
LMGP - UMR 5628 (CNRS/INPG), Domaine Universitaire, B.P. 46, F-38402 St. Martin d'Hères Cedex, France
Get access

Abstract

The growth of thick epitaxial 4H-SiC layers with low defect density is an essential step for the fabrication of SiC based devices. Cold- and hot wall reactors using silane and propane diluted in hydrogen were used in this study. The typical growth temperature range is 1700–1900 K and total pressure range 10–100 kPa. The resulting epilayers exhibit low background doping, low defect density and good thickness uniformity. The main problem is that it is difficult with this first generation of reactors to ensure a constant temperature over large wafer. A 3D simulation approach of heat and mass transfer was used with three objectives. The first one is to have a visualization of the flow, temperature and gaseous species fields in the standard reactor. The second one is to propose solutions for the optimal control of the temperature field and the subsequent uniformity of the epilayers over large dimensions. The third one is to improve the kinetic databases in this temperature range which has been very little investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsunami, H., Mat. Sci. Forum, 338–342, 125 (2000).Google Scholar
2. Itoh, A. and Matsunami, H., IEEE Electron Device Lett., 16, 280, (1995).Google Scholar
3. Neyret, E., PhD thesis, Institut National Polytecnique de Grenoble, France, 2000 Google Scholar
4. Rupp, R., Makarov, Yu.N., Behner, H., Wiedenhofer, A., Phys. Stat. Sol. (b), 202, 281 (1997).Google Scholar
5. Vorob'ev, A.N., Komissarov, A.E., Segal, A.S., Makarov, Yu.N., Karpov, S.Yu., Zhmakin, A.I., Rupp, R., Materials Science and Engineering, B61–62, 176 (1999).Google Scholar
6. Vorob'ev, A.N., Egorov, Yu.E., Makarov, Yu.N., Zhmakin, A.I., Galyukov, A.O., Rupp, R., Materials Science and Engineering, B61–62, 172 (1999).Google Scholar
7. Ellison, A., Zhang, J., Magnusson, W., Henry, A., Wahab, Q., Bergman, J.P., Hemmingson, C., Son, N.T., Janzen, E., Mat. Sci. Forum, 338–342, 1312 (2000).Google Scholar
8. Epigress AB, Ideon Science and Tecnology Park, SE-22370, Lund, SwedenGoogle Scholar
9. Lofgren, P.M., Hallen, C., Gu, C.Y., Ji, W., Mat. Sci. Forum, 338–342, 153 (2000).Google Scholar
10. Lofgren, P.M., Hallen, C., Gu, C.Y., Mat. Sci. Forum, 338–342, 149(2000).Google Scholar
11. Lofgren, P.M., Ji, W., Hallen, C., Gu, C.Y., J. Electrochem. Soc, 147, 164 (2000).Google Scholar
12. Wischmeyer, F., Kappeler, J., Berge, R., Fornell, J., Dauelsberg, M., Heuken, M., Jurgensen, H., Mat. Sci. Forum, accepted for publication.Google Scholar
13. Allendorf, M.D., Melius, C., J. Phys. Chem., 96, 428 (1992).Google Scholar
14. Allendorf, M.D., Melius, C., J. Phys. Chem., 97, 720 (1993).Google Scholar
15. Aubreton, J., Blanquet, E., Echlinger, M.F., Pons, M., Ann. Chim. Sci. Mat., 23, 753 (1998).Google Scholar
16. Allendorf, M.D., Kee, R.J., J. Electrochem. Soc. 138, 841 (1991).Google Scholar
17. Kuszmarski, M.A., J. CVD, 2, 20 (1993).Google Scholar
18. Raffy, C., Blanquet, E., Pons, M., Bernard, C., Melius, C.F. , C.F., Allendorf, M.D., J. Phys. IV, 9, 205 (1999) 205 Google Scholar
19. Raffy, C., Allendorf, M.D., Blanquet, E., Melius, C.F., Proceedings of the XV International Conference on CVD, Toronto, Canada, May 2000.Google Scholar
20. Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., Miller, J.A., A fortran computer code package for the evaluation of gas-phase multicomponent transport properties, Sandia National Laboratories Report, SAND 86–8246, 1986.Google Scholar
21. Flux3D software, Cedrat, Meylan, France (http://www.cedrat-grenoble.fr).Google Scholar
22. Danielsson, O., Forsberg, U., Henry, A., Janzen, E., Mat. Sci. Forum, accepted for publication.Google Scholar
23. Cfdace+ software, Cfdrc, Alabama, USA (http://www.cfdrc.com).Google Scholar