Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-19T02:20:54.474Z Has data issue: false hasContentIssue false

Hetero-Epitaxy of Crystalline Perovskite Oxides on GaAs(001)

Published online by Cambridge University Press:  01 February 2011

Y. Liang
Affiliation:
Microelectronics and Physical Sciences Laboratory
J. Kulik
Affiliation:
Process and Materials Characterization Laboratory Motorola Inc., 2100 E Elloit Road, Tempe, AZ 85284
Y. Wei
Affiliation:
Microelectronics and Physical Sciences Laboratory
T. Eschrich
Affiliation:
Microelectronics and Physical Sciences Laboratory
J. Curless
Affiliation:
Microelectronics and Physical Sciences Laboratory
B. Craigo
Affiliation:
Microelectronics and Physical Sciences Laboratory
S. Smith
Affiliation:
Microelectronics and Physical Sciences Laboratory
Get access

Abstract

Hetero-epitaxy of crystalline perovskite SrTiO3 and BaTiO3 on GaAs(001) was achieved using molecular beam epitaxy. A number of surface and interface techniques were used to characterize the growth, structural, and chemical properties of epitaxial oxide films on GaAs. Reflection-high-energy-electron diffraction of SrTiO3 and BaTiO3 showed streaky diffraction features and low diffraction background through out growth, indicating that the epitaxial SrTiO3 and BaTiO3 films had good crystallinity. X-ray diffraction showed an epitaxial relationship between these perovskite oxides and GaAs(001) substrates. Transmission electron microscopy and scanning probe microscopy revealed an abrupt oxide/GaAs interface and smooth SrTiO3 and BaTiO3 surfaces. The success of growth of epitaxial perovskite oxides on GaAs enabled us to integrate a number of functional oxides such as piezoelectric and magnetic oxides epitaxially on GaAs substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hong, M., Kwo, J., Kortan, A.R., Mannaerts, J.P., Sergent, A.M., Science, 283, 1897 (1999).Google Scholar
2. Hong, M., Lu, Z.H., Kwo, J., Kortan, AR., Mannaerts, J.P., and Krajewski, J.J., Appl. Phys. Lett. 76, 312 (2000).Google Scholar
3. Tarsa, E.j., De Gref, M., Clarke, D.R., Gossard, A.C., and Speck, J.S., J. Appl. Phys. 7, 3276 (1993).Google Scholar
4. Robey, S.W., J. Vac. Sci. Technol. A16, 2423 (1998).Google Scholar
5. Nishita, K., Koma, A., Saiki, K., J. Vac. Sci. Technol. A19, 2282 (2001).Google Scholar
6. Liu, X., Chen, X.Y., Yin, J., Liu, G., Yin, X.B., Chen, G.X., Wang, M., J. Vac. Sci. Technol. A19, 391 (2001).Google Scholar
7. Liang, Y., Wei, Y., Hu, X.M., Yu, Z., Droopad, R., Li, H., and Moore, K., submitted to J. Appl. Phys. Google Scholar
8. Liang, Y., Kulik, J., Eschrich, T. C., Droopad, R., Yu, Z., and Maniar, P., submitted to Appl. Phys. Lett. Google Scholar
9. Talin, A., Smith, S. M., Voight, S., Finder, J., Eisenbeiser, K., Penunuri, D., Yu, Z., Fejes, P., Eschrich, T., Curless, J., Convey, D., and Hooper, A., Appl. Phys. Lett. 81, 1062 (2002).Google Scholar