Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-21T02:28:36.376Z Has data issue: false hasContentIssue false

Heterometallic Alkoxides as Precursors to Multicomponent Oxides

Published online by Cambridge University Press:  28 February 2011

Liliane G. Hubert-Pfalzgraf
Affiliation:
Laboratoire de Chimie Moléculaire,Equipe de Recherche Associée au CNRS,Université de Nice-Sophia Antipolis,Parc Valrose,06034 Nice,France
Renee Papiernik
Affiliation:
Laboratoire de Chimie Moléculaire,Equipe de Recherche Associée au CNRS,Université de Nice-Sophia Antipolis,Parc Valrose,06034 Nice,France
Marie-Cecile Massiani
Affiliation:
Laboratoire de Chimie Moléculaire,Equipe de Recherche Associée au CNRS,Université de Nice-Sophia Antipolis,Parc Valrose,06034 Nice,France
Bernard Septe
Affiliation:
Laboratoire de Chimie Moléculaire,Equipe de Recherche Associée au CNRS,Université de Nice-Sophia Antipolis,Parc Valrose,06034 Nice,France
Get access

Abstract

Lead(II) oxides are involved in various advanced materials. Their high volatility as compared to that of other elements makes chemical routes to such materials especially attractive. Various synthetic routes to lead(II) alkoxides have therefore been estimated. They display a strong tendency to undergo spontaneous condensation reactions, giving oxoalkoxides Pb4O(OR)6 (R = tBu, iPr, Et). Reaction between Pb4O(OEt)6 and [Nb(OEt)5l2 does not proceed by simple addition of the alkoxides, but the lead tetranuclear oxoalkoxide is transformed to a hexanuclear one, Pb6O4 (OEt)4 , whose oxo ligands bear Nb(OEt)5 moieties, the overall formula being Pb6O4 (OEt)4 [Nb(OEt)5]4 1. The stoichiometry between the two metals corresponds to that of the PNM ceramic, and 207Pb NMR has been used as a tool to study the reactivity of 1 in the presence of various modifiers and magnesium ethoxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hubert-Pfalzgraf, L.G. New J. Chem. 11, 663 (1987).Google Scholar
2. Dislich, H., Angew. Chem. Int. Ed. Engl. 10, 363 (1971).Google Scholar
3. Okazaki, K., Ceramic Bull. 67, 1946 (1988).Google Scholar
4. Chaput, F., Boilot, J.P., Lejeune, M., Papiernik, R., Hubert-Pfalzgraf, L.G., J. Am. Ceram. Soc. 72, 1335 (1989).Google Scholar
5. Bradley, D.C., Chakravarti, B.N., Wardlaw, W., J. Chem. Soc. 1956, 2381. Google Scholar
5a Mehrotra, R.C., Aggrawal, M.M., Kapoor, P.N., J. Chem. Soc.(A), 1968, 2673.Google Scholar
6. Papiernik, R., Massiani, M.C., Hubert-Pfalzgraf, L.G., Inorg. Chim. Acta 165, 1 (1989).Google Scholar
7. Papiernik, R., Hubert-Pfalzgraf, L.G., Daran, J.C., J. Chem. Soc., Chem. Commun., in the press.Google Scholar
8. Janovskii, A.I., Turova, N. Ya., Turevskaya, E.P., Struchkov, Yu. T., Koordinatsionnaya Khimiya, 8, 158 (1982) Engl. Trans.Google Scholar
9. Dechter, J.J. “NMR of metal nucleides” Part I: Main group elements. Progress in Inorganic chemistry, ed Lippard, J.S.; vol 29, 285 (1982);Google Scholar
9a Harris, R.K., Kennedy, J.J., Farlane, W. Mc, “NMR and the Periodic Table”, ed. Harris, R.K., Mann, B.E., Academic Press, London 1978, p 366.Google Scholar
10. Govil, S., Kapoor, P.N., Mehrotra, R.C., J. Inorg. Nucl. Chem. 38, 172 (1976).Google Scholar