Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T10:35:25.367Z Has data issue: false hasContentIssue false

High-Temperature Superconductivity in Graphite-Sulfur Composites: Theoretical Analysis

Published online by Cambridge University Press:  18 March 2011

D. S. Galvão
Affiliation:
Instituto de Física, Universidade Estadual de Campinas – UNICAMP, Campinas, São Paulo, CEP 13083-970, CP 6165, Brazil.
B. Laks
Affiliation:
Instituto de Física, Universidade Estadual de Campinas – UNICAMP, Campinas, São Paulo, CEP 13083-970, CP 6165, Brazil.
R. R. da Silva
Affiliation:
Instituto de Física, Universidade Estadual de Campinas – UNICAMP, Campinas, São Paulo, CEP 13083-970, CP 6165, Brazil.
J. H. S. Torres
Affiliation:
Instituto de Física, Universidade Estadual de Campinas – UNICAMP, Campinas, São Paulo, CEP 13083-970, CP 6165, Brazil.
Y. Kopelevich
Affiliation:
Instituto de Física, Universidade Estadual de Campinas – UNICAMP, Campinas, São Paulo, CEP 13083-970, CP 6165, Brazil.
Get access

Abstract

Recently superconductivity in graphite-sulfur composites was experimentally observed. In this work we have analyzed the electronic structure changes associated with the presence of sulfur atoms in one and two dimensional graphite layers. We have considered ordered and disordered sulfur atoms distributions in many configurations. The density of states (DOS) of these structures were obtained using the negative factor counting (NFC) technique coupled to a tight-binding hamiltonian (Hückel type). Our results indicate that the incorporation of sulfur atoms at edge graphite layers (changing their global geometric curvature and increasing the DOS at the Fermi level) might be in the origin of the graphite superconductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Silva, R. R. da, Tores, J. H. S., and Kopelevich, Y., Phys. Rev. Lett. 87, 147001–1 (2001).Google Scholar
[2] González, J., Guinea, F., and Vozmediano, M. A. H., Phys. Rev. B 63, 134421 (2001).Google Scholar
[3] Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J., Nature (London). 410, 63 (2001).Google Scholar
[4] Dean, P., Martin, J. L., Proc. Roy. Soc. A259, 409 (1960).Google Scholar
[5] Ladik, J., Seel, M., Otto, P. and Bakhshi, A.K., Chem. Phys. 108, 203 (1986).Google Scholar
[6] Galvão, D. S., Santos, D. A. dos, Laks, B., Melo, C. P. de, and Caldas, M. J., Phys. Rev. Lett. 63, 786 (1989).Google Scholar
[7] Lavarda, F.C., Santos, M.C. dos, Galvão, D.S., and Laks, B., Phys. Rev. Lett. 73, 1267 (1994).Google Scholar
[8] Galvão, D.S., Laks, B., Silva, R.R. da, Torres, J.H.S., and Kopelevich, Y., to be published.Google Scholar