Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T02:15:31.896Z Has data issue: false hasContentIssue false

Hydrogen Bonding in a-Si:H Prepared by Remote Hydrogen Plasma Deposition

Published online by Cambridge University Press:  25 February 2011

S. E. Ready
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
J. B. Boyce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
J. Walker
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
K. S. Stevens
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Nuclear magnetic resonance (NMR) has provided essential information on the local atomic bonding and microstructure of hydrogen in hydrogenated amorphous silicon (a-Si:H). Here we describe results from NMR and Raman spectroscopy on the hydrogen distribution and bonding in a-Si:H prepared by remote hydrogen plasma (RHP) deposition and contrast the results with those from a-Si:H prepared by conventional glow discharge (GD) deposition. The films prepared by the two techniques have similar H bonding except for the presence in the RHP sample of about 1 atomic % molecular hydrogen, a factor of ten higher than in GD material. For RHP samples prepared from a deuterium plasma rather than a hydrogen plasma, substantial differences in the hydrogen NMR spectra, hydrogen spin lattice relaxation time and Raman spectra are observed. The hydrogen which necessarily originates from the silane has a dramatically altered spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Johnson, N. M., Walker, J., Doland, C. M., Winer, K., and Street, R. A., Appl. Phys. Lett. 54, 1872 (1989).Google Scholar
2. Hirose, M., in Semiconductors and Semimetals Vol. 21A, ed. Pancove, J. I. (Academic Press, Inc., New York, 1984), pp. 153177.Google Scholar
3. Reimer, J. A., Vaughan, R. W., and Knights, J. C., Phys. Rev. B 24, 3360 (1981).Google Scholar
4. Carlos, W. E. and Taylor, P. C., Phys. Rev. B 26, 3650 (1982).Google Scholar
5. Boyce, J. B., Ready, S. E., Stutzman, M., and Norberg, R. E., J. Non. Cryst. Sol. 114, 211 (1989).Google Scholar
6. Johnson, N. M., Walker, J., Doland, C. M., Winer, K., and Street, R. A., Mat. Res. Soc. Svmp. Proc. 149, 39 (1989).Google Scholar
7. Johnson, N. M., unpublished results.Google Scholar
8. Santos-Filho, P., Volz, M. P., Corey, R. L., Kim, Y. W., Fedders, P. A., Norberg, R. E., Turner, W., and Paul, W., J. Non. Cryst. Sol. 114, 235 (1989).Google Scholar
9. Ready, S. E., Boyce, J. B., and Tsai, C. C., Mat. Res. Soc. Symp. Proc. 118, 103 (1988).Google Scholar
10. Vanderheiden, E. J., Williams, G. A., Taylor, P. C., Finger, F., and Fuhs, W., Mat. Res. Soc. Symp. Proc. 149, 503 (1989).Google Scholar