Hostname: page-component-76dd75c94c-lntk7 Total loading time: 0 Render date: 2024-04-30T09:06:19.742Z Has data issue: false hasContentIssue false

Hydrogen in GaN

Published online by Cambridge University Press:  21 February 2011

N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, California 94304, USA
W. Götz
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, California 94304, USA
J. Neugebauer
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, California 94304, USA
C. G. Van de walle
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, California 94304, USA
Get access

Abstract

Hydrogen is implicated in the low doping efficiency of acceptors (e.g., Mg) in MOCVD-grown GaN by the following observations: the well-established role of hydrogen in the same phenomenon in other semiconductors; re-passivation of thermally activated Mg in GaN upon exposure to NH3 or H at temperatures > 400°C; correlation between Mg and H concentrations; and computational studies on the diffusivities of charged H in GaN and on the configuration and stability of the Mg-H complex in GaN. Strong experimental evidence for the Mg-H complex comes from variable-temperature Hall effect measurements which reveal that after hydrogenation of activated GaN:Mg the hole mobility increases as the hole concentration decreases, which is consistent with removal of ionized scattering centers and not with the introduction of separate compensating defects. However, experimental evidence is also accumulating to suggest that the Mg activation process involves the generation or transformation of electrically active defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
2 Nakamura, S., Mukai, T., Senoh, M., and lwasa, l., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
3 Hydrogen in Semiconductors, eds. Pankove, J. I. and Johnson, N. M., Semiconductors and Semimetals Vol. 34 (Academic Press, San Diego, 1991).Google Scholar
4 Deleo, G. G. and Fowler, W. B., in Hydrogen in Semiconductors, eds. Pankove, J. I. and Johnson, N. M., Semiconductors and Semimetals Vol. 34 (Academic Press, San Diego, 1991), ch. 14.Google Scholar
5 Chevallier, J., Clerjaud, B., and Pajod, B., in Hydrogen in Semiconductors, eds. Pankove, J. I. and Johnson, N. M., Semiconductors and Semimetals Vol. 34 (Academic Press, San Diego, 1991), ch. 13.Google Scholar
6 Zundel, T. and Weber, J., Phys. Rev. B 39 13549 (1990).Google Scholar
7 Leitch, A. W. R., Prescha, Th., and Stutzmann, M., Appl. Surf. Sci. 50, 390 (1991).Google Scholar
8 Pearton, S. J., Abernathy, C. R., and Lopata, J., Appl. Phys. Lett. 59, 3571 (1991).Google Scholar
9 Herring, C. and Johnson, N. M., in Hydrogen in Semiconductors, eds. Pankove, J. I. and Johnson, N. M., Semiconductors and Semimetals Vol. 34 (Academic Press, San Diego, 1991), ch. 10.Google Scholar
10 Johnson, N. M., Mat. Res. Soc. Symp. Proc. 262, 369 (1992).Google Scholar
11 Ohba, Y. and Hatano, A., Jpn. J. Appl. Phys. 33, L1367 (1994).Google Scholar
12 Yuan, C., Salagaj, T., Gurary, A., Zawadzki, P., Chern, C. S., Kroll, W., Stall, R. A., Li, Y., Schurman, M., Hwang, C.-Y., Mayo, W. E., Lu, Y., Pearton, S. J., Krishnankutty, S., and Kolbas, R. M., J. Electrochem. Soc. 142, L163 (1995).Google Scholar
13 Moustakas, T. D., Lei, T., and Molnar, R. J., Mat. Res. Soc. Symp. Proc. 281, 753 (1993).Google Scholar
14 Götz, W., Johnson, N.M., Street, R.A., Amano, H., and Akasaki, I., Appl. Phys. Lett. 66, 1340(1995).Google Scholar
15 Johnson, N. M., in Hydrogen in Semiconductors, eds. Pankove, J. I. and Johnson, N. M., Semiconductors and Semimetals Vol. 34 (Academic Press, San Diego, 1991), ch.7.Google Scholar
16 Brandt, M. S., Johnson, N. M., Molnar, R. J., Singh, R., and Moustakas, T. D., Appl. Phys. Lett. 64, 2264(1994).Google Scholar
17 Götz, W., this proceedings.Google Scholar
18 Götz, W., Johnson, N.M., Walker, J., Bour, D. P., and Street, R. A., Appl. Phys. Lett., in press.Google Scholar
19 Neugebauer, J. and Van de Walle, C. G., Phys. Rev. Lett., in press.Google Scholar
20 Neugebauer, J. and Van de Walle, C. G., this proceedings.Google Scholar
21 Johnson, N. M., Herring, C., and Van de Walle, C. G., Phys. Rev. Lett. 73, 130 (1994).Google Scholar
22 Van Vechten, J. S., Zook, J. D., Hornig, R. D., and Goldenberg, B., Jpn. J. Appl. Phys. 31, 3662 (1992).Google Scholar
23 Neugebauer, J. and Van de Walle, C. G., Appl. Phys. Lett., in press.Google Scholar
24 Brandt, M. S., Ager III, J. W., Götz, W., Johnson, N. M., Harris, J. S. Jr., Molnar, R. J., Singh, R., and Moustakas, T. D., Phys. Rev. B 49, 14758 (1994).Google Scholar