Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-23T22:13:47.969Z Has data issue: false hasContentIssue false

Hydrogen Termination of the NH4F-Treated Si(111) Surface Studied by Photoemission and Surface Infrared Spectroscopy

Published online by Cambridge University Press:  21 February 2011

Michio Niwano
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980, Japan
Kazunari Kurita
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980, Japan
Nobuo Miyamoto
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980, Japan
Get access

Abstract

The Si(111) surface treated in NH4F has been investigated using photoemission and surface infrared spectroscopy (SIS). We confirm both with photoemission and SIS measurements that the NH4F-treated Si(111) surface is dominantly terminated with the monohydride Si (Si-H) oriented perpendicular to the surface and is free from silicon oxide. Photoemission and SIS data also demonstrate that ammonium fluorides react with the Si substrate to generate the hexafluorosilicate salt, (NH4)2SiF6. We propose that the formation of (NH4)2SiF6 or SiF62− ions plays an important role in the NH4F etching of Si crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grunthaner, F.J. and Grunthaner, P.J., Mater. Sci. Rep. 1, 69 (1986).CrossRefGoogle Scholar
2. Grundner, M. and Jacob, H., Appl. Phys. A39, 73 (1986).Google Scholar
3. Ubara, H., Imura, T., and Hiraki, A., Solid State Commun. 50, 673 (1984).CrossRefGoogle Scholar
4. Yablonovitch, E., Allara, D.L., Chang, C.C., Gmitter, T., and Bright, T.B., Phys. Rev. Lett. 57, 249 (1986).Google Scholar
5. Burrows, V.A., Chabal, Y.J., Higashi, G.S., Raghavachari, K., and Christman, S.B., Appl. Phys. Lett. 53, 998 (1988).Google Scholar
6. Chabal, Y.J., Higashi, G.S., Raghavachari, K., and Burrows, V.A., J. Vac. Sci. Technol. A7, 2104 (1989).CrossRefGoogle Scholar
7. Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
8. Higashi, G.S., Becker, R.S., Chabal, Y.J., and Becker, A.J., Appl. Phys. Lett. 58, 1656 (1991).Google Scholar
9. Dumas, P. and Chabal, Y.J., Chem. Phys. Lett. 181, 537 (1991).CrossRefGoogle Scholar
10. Chabal, Y.J., Surf. Sci. Rep. 8, 211 (1988).CrossRefGoogle Scholar
11. Sakurai, T. and Hagstrum, H.D., Phys. Rev. B12, 5349 (1975).Google Scholar
12. Himpsel, F.J., McFeely, F.R., Taleb-Ibrahimi, A., Yarmoff, J.A., and Hollinger, G., Phys. Rev. B38, 6084 (1988).Google Scholar
13. Niwano, M., Katakura, H., Takeda, Y., Takakuwa, Y., and Miyamoto, N., J. Vac. Sci. Technol. A9, 195 (1991).Google Scholar
14. Burrows, V.A. and Yota, J., Thin Solid Film, 193/194, 371 (1990).Google Scholar
15. Yota, J. and Burrows, V.A., J. Appl. Phys. 69, 7369 (1991).Google Scholar
16. McFeely, F.R., Morar, J.F., Shinn, N.D., Landgren, G., and Himpsel, F.J., Phys. Rev. B30, 764 (1984).Google Scholar
17. Niwano, M., Takeda, Y., Ishibashi, Y., Kurita, K., and Miyamoto, N., J. Appl. Phys. 71, 5546 (1992).Google Scholar