Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-15T13:55:38.490Z Has data issue: false hasContentIssue false

Hydrogenation Mechanism of Top-Gated Polysilicon Thin Film Transistors

Published online by Cambridge University Press:  15 February 2011

Yong-Min Ha
Affiliation:
Dept. of Electrical Engineering, Korea Advanced Institute of Science and Technology, 373–1 Kusong-Dong Yusong-Gu, Taejon, 305–701, Korea.
Jung-In Han
Affiliation:
Dept. of Electrical Engineering, Korea Advanced Institute of Science and Technology, 373–1 Kusong-Dong Yusong-Gu, Taejon, 305–701, Korea.
Chul-Hi Han
Affiliation:
Dept. of Electrical Engineering, Korea Advanced Institute of Science and Technology, 373–1 Kusong-Dong Yusong-Gu, Taejon, 305–701, Korea.
Choong-Ki Kim
Affiliation:
Dept. of Electrical Engineering, Korea Advanced Institute of Science and Technology, 373–1 Kusong-Dong Yusong-Gu, Taejon, 305–701, Korea.
Get access

Abstract

Hydrogen diffusion paths in top-gated polysilicon thin-film transistors have been investigated by measuring the current-voltage characteristics of the transistors with various sizes after hydrogenation. Hydrogenation has been performed in ECR plasma sysytem. It is noted that hydrogen is introduced through three main paths instead of one predominant path. The hydrogen from different paths affects the device parameters differently.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Levinson, J., Shepherd, F. R., Scanlon, P. J., Wesrwood, W. D., Este, G., and Rider, M., J. Appl. Phys. 53, 1193 (1982).Google Scholar
2. Wu, I.-W., Huang, T. Y., Jackson, W. B., Lewis, A. G., Chiang, A., IEEE Elec. Dev. Lett. 12,181 (1991).Google Scholar
3. Rodder, M., Antoniadis, D. A., Scholg, F., and Kalnitsky, A., IEEE Elec. Dev. Lett. 8, 27 (1987).Google Scholar
4. P.Pollack, G., Richardson, W. F., Malhi, S. D. S., Bonifield, T., Shichijo, H., Banerjee, S., Elaby, M., Shab, A. H., Womack, R., and Chatterjee, P. K., IEEE Elec. Dev. Lett. 5, 468 (1984).Google Scholar
5. Kamins, T. I. and Marcoux, , IEEE Elec. Dev. Lett. 1, 150 (1980).Google Scholar
6. Nakazawa, K., Arai, H., and Kohda, S., Appl. Phys. Lett. 51, 1623 (1987).Google Scholar
7. Mitra, U., Rossi, B., and Khan, B., J. Electrochem. Soc. 138, 3420 (1991).Google Scholar
8. Jackson, W. B., Johnson, N. M., Tsai, C. C., Wu, I. -W., Chiang, A., and Smith, D., Appl. Phys. Lett. 61, 1670 (1992).Google Scholar
9. Ditizio, R. A., Liu, G., and Fonash, S. J., Appl. Phys. Lett. 56, 1140 (1990).Google Scholar
10. Pearton, S. J., Corbett, J.W., and Shi, T. S., Appl. Phys. A 43,153 (1987).Google Scholar
11. Moore, Chad B., Ast, Dieter G., MRS Symp. Proc. vol.182, 341 (1990).Google Scholar
12. Dimitriadis, C.A., Coxon, P. A., Laszlo Dozsa, Leonidas Papadimitrion and Nicolas Economou, IEEE Elec.Dev. 39, 598 (1992).Google Scholar
13. Colinge, Jean-Pierre, in Silicon-on Insulator Technology: Materials to VLSI (Kluwer Academic Publishers, Massachusetts, 1991), pp. 149157.Google Scholar
14. -Conde, A. O. and Fossum, J. G., IEEE Elec. Dev. 33, 1563 (1986).Google Scholar