Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T08:47:12.768Z Has data issue: false hasContentIssue false

Hydrogen-related defects in bulk ZnO

Published online by Cambridge University Press:  31 January 2011

Matthew D McCluskey
Affiliation:
mattmcc@wsu.edu, Washington State University, Pullman, Washington, United States
Slade J. Jokela
Affiliation:
sjokela@mail.wsu.edu, Washington State University, Pullman, Washington, United States
Marianne C. Tarun
Affiliation:
mariannetarun@yahoo.com, Washington State University, Pullman, Washington, United States
Get access

Abstract

Zinc oxide (ZnO) has attracted resurgent interest as an active material for energy-efficient lighting applications. An optically transparent crystal, ZnO emits light in the blue-to-UV region of the spectrum. The efficiency of the emission is higher than more “conventional” materials such as GaN, making ZnO a strong candidate for solid-state white lighting. Despite its advantages, however, ZnO suffers from a major drawback: as grown, it contains a relatively high level of donors. These unwanted defects compensate acceptors or donate free electrons to the conduction band, thereby keeping the Fermi level in the upper half of the band gap. This paper reviews recent work on hydrogen donors and nitrogen-hydrogen complexes in ZnO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pearton, S.J. Norton, D.P. Ip, K. Heo, Y.W. and Steiner, T. Journ. Vacuum Sci. Tech B 22, 932(2004).Google Scholar
2 Look, D.C. Mater. Sci. Engin. B 80, 383(2001).Google Scholar
3 Minami, T. MRS Bulletin 25 (8), 38 (2000).Google Scholar
4 Nuruddin, A. and Abelson, J.R. Thin Solid Films 394, 49(2001).Google Scholar
5 Dransfield, G.P. Radiation Protection Dosimetry 91, 271(2000).Google Scholar
6 Clarke, D.R. Journal of the American Ceramic Society 82, 485(1999).Google Scholar
7 Wager, J.F. Science 300, 1245(2003).Google Scholar
8 Ntep, J.M. Hassani, S.S. Lusson, A. Tromson-Carli, A., Ballutaud, D. Didier, G. and Triboulet, R. Journ. Crystal Growth 207, 30(1999).Google Scholar
9 Smith, J.W. et al. , Journal of Animal Science 75, 1861(1997).Google Scholar
10 McCluskey, M.D. Jokela, S.J. Zhuravlev, K.K. Simpson, P.J. and Lynn, K.G. Appl. Phys. Lett. 81, 3807(2002).Google Scholar
11 Jokela, S.J. and McCluskey, M.D. Phys. Rev. B 72, 113201(2005).Google Scholar
12 Jokela, S.J. and McCluskey, M.D. Phys. Rev. B 76, 193201(2007).Google Scholar
13 Jokela, S.J. McCluskey, M.D. and Lynn, K.G. Physica B 340-342, 221(2003).Google Scholar
14 Limpijumnong, S. and Zhang, S.B. Appl. Phys. Lett. 86, 151910(2005).Google Scholar
15 Jokela, S.J. and McCluskey, M.D. Phys. Rev. B 72, 113201(2005).Google Scholar
16 Van de Walle, C.G., Phys. Rev. Lett. 85, 1012(2000).Google Scholar
17 Wardle, M.G. Goss, J.P. and Briddon, P.R. Appl. Phys. Lett. 88, 261906(2006).Google Scholar
18 Shimomura, K. Nishiyama, K. and Kadono, R. Phys. Rev. Lett. 89, 255505(2002).Google Scholar
19 Lavrov, E.V. Weber, J. Börrnert, F., Walle, C.G. Van de, Helbig, R. Phys. Rev. B 66, 165205(2002).Google Scholar
20 Seager, C.H. and Myers, S.M. J. Appl. Phys. 94, 2888(2003).Google Scholar
21 Shi, G.A. Stavola, M. Pearton, S.J. Thieme, M. Lavrov, E.V. and Weber, J. Phys. Rev. B 72, 195211(2005).Google Scholar
22 McCluskey, M.D. and Jokela, S.J. Physica B 401-2, 355(2007).Google Scholar
23 Li, X.B. Limpijumnong, S. Tian, W.Q. Sun, H.B. and Zhang, S.B. Phys. Rev. B 78, 113203(2008).Google Scholar
24 Jokela, S.J. and McCluskey, M.D. Phys. Rev. B 76, 193201(2007).Google Scholar
25 Li, X. Keyes, B. Asher, S. Zhang, S.B. Wei, S. H., Coutts, T.J. Limpijumnong, S. and Walle, C.G. Van de, Appl. Phys. Lett. 86, 122107(2005).Google Scholar
26 Hu, J. He, H.Y. and Pan, B.C. J. Appl. Phys. 103, 113706(2008).Google Scholar