Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-07T20:44:39.167Z Has data issue: false hasContentIssue false

Hydrotalcite Formed by Alteration of R7T7 Nuclear Waste Glass and Basaltic Glass in Salt Brine at 190°C

Published online by Cambridge University Press:  25 February 2011

A. Abdelouas
Affiliation:
Centre de Géochimie de la Surface, C.N.R.S., 1, rue Blessig, 67084 Strasbourg Cedex.
J. L. Crovisier
Affiliation:
Centre de Géochimie de la Surface, C.N.R.S., 1, rue Blessig, 67084 Strasbourg Cedex.
W. Lutze
Affiliation:
Kernforschungszentrum Karlsruhe, INE, Postfach 3640, 76021 Karlsruhe, Deutschland.
R. Müller
Affiliation:
Kernforschungszentrum Karlsruhe, INE, Postfach 3640, 76021 Karlsruhe, Deutschland.
W. Bernotat
Affiliation:
Kernforschungszentrum Karlsruhe, INE, Postfach 3640, 76021 Karlsruhe, Deutschland.
Get access

Abstract

The R7T7 and synthetic basaltic glasses were submitted to corrosion in a saline MgCl2 dominated solution at 190°C. For both glasses, the early alteration product is a hydrotalcite-like compound in which HPO42-, SO4-2 and Cl- substitutes to CO32. The measured d003 spacing is 7.68 Å for the hydrotalcite formed from R7T7 glass and 7.62 Å for the hydrotalcite formed from basaltic glass which reflect the high aluminium content. Chemical microanalyses show that the hydrotalcite is subsequently covered by a silica-rich gel which evolves into saponite after few months.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lutze, W. and Grambow, B., “The effect of glass corrosion on near field chemistry”, Radiochim. Acta., 58/59, 37 (1992).CrossRefGoogle Scholar
2 Lutze, W., Müller, R. and Montserrat, W., “Chemical corrosion of Cogema glass in high saline brines”, Scientific basis for nuclear waste management XII, Mat. Res. Soc. Proc., 127, 8188 (1989).CrossRefGoogle Scholar
3 Ehret, G., Crovisier, J. L. and Eberhart, J. P., “A new method for studying leached glasses: analytical electron microscopy on ultramicrotomic thin sections”, J. Non-crystal Solids 86, 7279 (1986).CrossRefGoogle Scholar
4 Gastuche, M. C., Brown, G. and Mortland, M. M., “Mixed magnesium-aluminium hydroxides I”, Clay Minerals, 7, 177192 (1967).CrossRefGoogle Scholar
5 Miyata, S., “The synthesis of hydrotalcite-like compounds and their structures and physico-chemical properties I: the systems Mg2+-Al3+-NO3-, Mg2+-Al3+-Cl-, Mg2+-Al3+-ClO4-, Ni2+-Al3+-Cl- and Zn2+-Al3+-Cl-”, Clays & Clay Minerals, 23, 369375 (1975).CrossRefGoogle Scholar
6 Miyata, S., “Anion-exchange properties of hydrotalcite-like compounds”, Clays & Clay Minerals, 31, 305311 (1983).CrossRefGoogle Scholar
7 Thomassin, J. H., and Touray, J. C., “L’hydrotalcite, un hydroxycarbonate transitoire précocément formé lors de l’interaction verre basaltique/eau de mer”, Bull, Minéral.,105, 312319 (1982).CrossRefGoogle Scholar
8 Crovisier, J. L., Eberhart, J. P., Thomassin, J. H., Juteau, T., Touray, J. C. and Ehret, G., “Interaction «eau de mer-verre basaltique» à 50°C. Formation d’un hydroxycarbonate et de produits silicatés amorphes (Al, Mg) et mal cristallisés (Al, Fe, Mg). Etude en microscopie électronique et par spectrométrie des photoélectrons (E.S.C.A.)”, C. R. Acad. Sc. Paris, 294, Série II, 989–994 (1982)Google Scholar
9 Schmitz, W., Singer, A., Backer, H. and Stoffers, P., “Hydrothermal serpentine in a hess deep sediment core”, Marine Geology, 46, M17M26 (1982).CrossRefGoogle Scholar