Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-14T03:22:45.858Z Has data issue: false hasContentIssue false

Imaging VLSI Cross Sections by Atomic Force Microscopy

Published online by Cambridge University Press:  15 February 2011

Gabi Neubauer
Affiliation:
Intel Corporation. 2200 Mission College Blvd.. P.O. Box 58119. SC2-24, Santa Clara, CA 95052-8119
M. Lawrence
Affiliation:
Intel Corporation. 2200 Mission College Blvd.. P.O. Box 58119. SC2-24, Santa Clara, CA 95052-8119
A. Dass
Affiliation:
Intel Corporation. 2200 Mission College Blvd.. P.O. Box 58119. SC2-24, Santa Clara, CA 95052-8119
Thad J. Johnson
Affiliation:
Department of Materials Science and Engineering at Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139
Get access

Abstract

Imaging is an integral part of VLSI technology development and quality control in device manufacturing. We report a novel application of Atomic Force Microscopy to image VLSI cross sections of metallographically polished samples. The major advantage of this technique over conventional imaging techniques, such as Scanning or Transmission Electron Microscopy, is the higher resolution achievable in combination with higher throughput and an easy access to quantitative data, such as line widths or re-entrant angles. We observe a very good correlation of AFM VLSI cross section images, acquired in air, with those acquired by SEM and TEM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Binnig, G., Quate, C.F., Gerber, Ch.; Phys. Rev. Lett. 56, 930 (1986).Google Scholar
2. Binnig, G., Rohrer, H., Gerbe, Ch.. Weibel, E.: Phys. Rev. Lett. 49, 57 (1982).CrossRefGoogle Scholar
3. Salemink, H., Albrektsen, O.; J. Vac. Sci. Technol. B 9, 779 (1991).CrossRefGoogle Scholar
4. Abraham, D. L., Veider, A., Schonenberger, Ch.. Meier, H. P., Arendt, D. J., Alvarado, S. F.: Appl. Phys. Lett. 56, 1564 (1990).CrossRefGoogle Scholar
5. Kato, T., Tanaka, I.; Rev. Sci. Instr. 61. 1664 (1990).Google Scholar
6. Tanimoto, M., Nakano, Y.; J. Vac. Sci. Technol. A 8, 553 (1990).Google Scholar
7. Kordic, S., van Loenen, E. J., Walker, A. J.; Proc. 1st Intern. Workshop on the Measurement and Characterization of Ultra-Shallow Doping Profiles in Semiconductors, Vol. II. North Carolina, April 1991.Google Scholar
8. Chapman, R., Kellam, M., Goodwin-Johansson, S., Russ, J.. McGuire, G. E., Kjoller, K.; Proc. 1st Intern. Workshop on the Measurement and Characterization of Ultra-Shallow Doping Profiles in Semiconductors, Vol. II. North Carolina, April 1991.Google Scholar
9. LaBrasca, J. V., Chapman, R. C.. McGuire, G. E., Nemanich, R. J.; J. Vac. Sci. Technol. B 9, 752 (1991).Google Scholar
10. Takigami, T.. Tanimoto, M.; Appl. Phys. Lett. 58, 2288 (1991).Google Scholar
11. Slinkman, J. A., Williams, C. C., Abraham, D. W., Wickramasinghe, H. K; International Electron Devices Meeting. San Francisco, CA, 73 (1990).Google Scholar
12. Abraham, D. W., Williams, C., Slinkman, J., Wickramasinghe, H. K.; J. Vac. Sci. Technol. B 9. 703 (1991).CrossRefGoogle Scholar
13. O'Boyle, M. P.. Abraham, D. W., Wickramasinghe, H. K., Slinkman, J., Williams, C. C.; Proc. 1st Intern. Workshop on the Measurement and Characterization of Ultra-Shallow Doping Profiles in Semiconductors, Vol. II. North Carolina, April 1991.Google Scholar
14. Russel, P., North Carolina State University.Google Scholar