Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-21T00:12:01.685Z Has data issue: false hasContentIssue false

Influence of Metal Contamination on Minority Carrier Diffusion Length and Oxide Charge

Published online by Cambridge University Press:  10 February 2011

J. Sakuma
Affiliation:
Fujitsu limited, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-0053, Japan
Y. Okui
Affiliation:
Fujitsu limited, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-0053, Japan
H. Miyazawa
Affiliation:
Fujitsu limited, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-0053, Japan
F. Inoue
Affiliation:
Fujitsu limited, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-0053, Japan
M. Miyajima
Affiliation:
Fujitsu limited, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-0053, Japan
Get access

Abstract

Many kinds of ULSI Circuit (DRAM, LOGIC, FRAM [1] etc.) are produced at the same production line to reduce the costs. So we have to control many kinds of metal contamination. We investigated the influence of metal contamination on minority carrier diffusion length and oxide charge. The metal impurities we studied are Fe, Cu, Ni, Cr, Al, Na, Ca, FRAM electrode metals (Pt, Ru), metals included in PZT ferro-electric capacitors (Pb, Zr, Ti) [2], metals added to PZT (La, Nb) [3], and metals used for SBT Ferro-electric capacitors (Sr, Bi, Ta) [4].

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kinney, W. I., Shephero, W., Miller, W., Evans, J., Womack, R., IEDM87 (1987. 12) pp. 850851 Google Scholar
[2] Carrano, J., Sudhama, C., and Lee, J., Tasch, A., Miller, W., IEDM89 (1989), pp. 255258 Google Scholar
[3] Tominaga, K. et al. Jpn. Appl. Phys. 32 (1993), 40824085 Google Scholar
[4] Paz de Araujo, C. A., et al. Nature, Vol. 374, 13 p 627 (Apr., 1995)Google Scholar
[5] Goodman, A.M., J.Appl. Phys., vol.32, p. 2550 (1961).Google Scholar
[6] Lagowski, J., Edelman, P., Dexter, M., Henley, W., Semicond. Sci. Technol., vol. 7, p. A185 (1992).Google Scholar
[7] Lagowski, J., U.S. Patent No. 5,025,145Google Scholar
[8] Jastrzebski, Lubek, and Henley, Worth, SOLID STATE TECHNOLOGY, 35, p.27, Dec 1992.Google Scholar
[9] Edelman, P., Hoff, A. M., Jastrzebski, L., and Lagowski, J.. Proc. SPIE Vol. 2337, p. 154164, Optical Characterization Techniques for High-Performance Microelectronic Device Manufacturing (09/1994)Google Scholar
[10] Hourai, M., Naridomi, T., Oka, Y., Murakami, K., Sumita, S., Fujino, N., and Shiraiwa, T., Jpn. J. Appl. Phys., 27, L2361 (1988)Google Scholar