Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T03:17:36.436Z Has data issue: false hasContentIssue false

Initial Stage Carrier Dynamics in Porous Silicon Using Ultrafast Spectroscopy

Published online by Cambridge University Press:  25 February 2011

T. Matsumoto
Affiliation:
Electronics Research Laboratories, Nippon Steel Corporation, 5 – 10 – 1 Fuchinobe, Sagamihara, Kanagawa 229, Japan
O. B. Wright
Affiliation:
Electronics Research Laboratories, Nippon Steel Corporation, 5 – 10 – 1 Fuchinobe, Sagamihara, Kanagawa 229, Japan
T. Futagi
Affiliation:
Electronics Research Laboratories, Nippon Steel Corporation, 5 – 10 – 1 Fuchinobe, Sagamihara, Kanagawa 229, Japan
H. Mimura
Affiliation:
Electronics Research Laboratories, Nippon Steel Corporation, 5 – 10 – 1 Fuchinobe, Sagamihara, Kanagawa 229, Japan
Y. Kanemitsu
Affiliation:
Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

We have studied the electronic relaxation processes in porous silicon using a femtosecond pump and probe pulse–correlation technique at 440–nm wavelength. We have observed photoinduced absorption with a response time on the order of 5 ps. From picosecond luminescence decay measurements and the femtosecond pump and probe experiments, the carrier dynamics corresponding to our excitation conditions in porous Si is clarified as follows: carriers are excited in Si microcrystals and then rapidly thermalize to the surface state within 5 ps. After this, strong luminescence occurs from this state with decay components on the order of 1 ns.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[2] Cullins, A. G. and Canham, L. T., Nature 353, 335 (1991).Google Scholar
[3] Cole, M. W., Harvey, J. F., Lux, R. A., Eckart, D. W., and Tsu, R., Appl. Phys. Lett. 60, 2800 (1992).Google Scholar
[4] Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
[5] Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
[6] Matsumoto, T., Futagi, T., Mimura, H., and Kanemitsu, Y., Extended Abstracts of the 1992 International Conference on Solid State Devices and Materials (Tsukuba, August 26 - 28, 1992) p. 478.Google Scholar
[7] Matsumoto, T., Futagi, T., Mimura, H., and Kanemitsu, Y., Phys. Rev. B47 (1993) in press.Google Scholar
[8] Kanemitsu, Y., Uto, H., Matsumoto, T., Futagi, T., and Mimura, H. (unpublished).Google Scholar
[9] Kanemitsu, Y., Suzuki, K., Uto, H., Masumoto, Y., Matsumoto, T., and Matsumoto, H., Appl. Phys. Lett. 61, 2446 (1992).Google Scholar
[10] Nakamura, A., Yamada, H., and Tokizaki, T., Phys. Rev. B40, 8585 (1989).CrossRefGoogle Scholar
[11] Itoh, T., Furumiya, M., Ikehara, T., and Gourdon, C., Solid State Commun. 73, 271 (1990).Google Scholar
[12] Peyghambarian, N., Fluegel, B., Hulin, D., Migus, A., Joffre, M., Antonetti, A., Koch, S. W., and Lindberg, M., IEEE J. Quantum Electron. QE–25, 2516 (1989).Google Scholar
[13] Bawendi, M. G., Wilson, W. L., Rothberg, L., Carroll, P. J., Jedju, T. M., Steigerwald, M. L., and Brus, L. E., Phys. Rev. Lett. 65, 1623 (1990).CrossRefGoogle Scholar
[14] Tauc, J. : Semiconductors and Semimetals, ed. Pankove, J. I. (Academic, London,1984) Vol. 21, part B, p. 299.Google Scholar
[15] Matsumoto, T., Ueda, K., and Tomita, M., Chem. Phys. Letters, 191, 627 (1992).Google Scholar
[16] Street, R. A. :Semiconductors and Semimetals, ed. Pankove, J. I. (Academic, London, 1984) Vol. 21, Part B, p. 197.Google Scholar