Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-14T20:04:32.262Z Has data issue: false hasContentIssue false

Injection of point defects by oxidation of AlGaAs

Published online by Cambridge University Press:  01 February 2011

Danielle R. Chamberlin
Affiliation:
Agilent Technologies, Palo Alto, CA 94304
Scott A. McHugo
Affiliation:
Agilent Technologies, Palo Alto, CA 94304
Dariusz Burak
Affiliation:
Agilent Technologies, Palo Alto, CA 94304
Deyon Burke
Affiliation:
Agilent Technologies, Palo Alto, CA 94304
Tim Osentowski
Affiliation:
Agilent Technologies, Palo Alto, CA 94304
S. Jeffrey Rosner
Affiliation:
Agilent Technologies, Palo Alto, CA 94304
Get access

Abstract

Injection of point defects into GaAs/AlxGa1-xAs heterostructures by oxidation of AlxGa1-xAs is investigated. The blueshift of the PL emission from GaAs quantum wells is measured as a function of rapid thermal annealing conditions in as-grown and thermally oxidized samples. Contrary to published data for point defect injection by oxidation of GaAs, oxidation of AlxGa1-xAs appears to reduce the interdiffusion of the quantum wells. The PL peak shifts after annealing have been fit assuming Al diffusion in the quantum wells and solving the singleparticle Schrödinger equation. These fits show a reduction in group-III diffusivity of over an order of magnitude with an oxidized layer of AlxGa1-xAs on the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Onuma, T., Hirao, T., and Sugawa, T., J. of the Electrochem. Soc. 129 (4), 837 (1982).Google Scholar
2. Katayama, M., Tokuda, Y., Inoue, Y., Usami, A., and Wada, T., J. Appl. Phys. 69 (6), 3542 (1991).Google Scholar
3. Fu, L., Deenapanray, P. N. K., Tan, H. H., Jagadish, C., Dao, L. V., and Gal, M., Appl. Phys. Lett. 76 (7), 837 (2000).Google Scholar
4. Yuan, S., Kim, Y., Tan, H. H., Jagadish, C., Burke, P. T., Dao, L. V., Gal, M., Chan, M. C. Y., Li, E. H., Zou, J., Cai, D. Q., Cockayne, D. J. H., and Cohen, R. M., J. Appl. Phys. 83 (3), 1305 (1998).Google Scholar
5. Cohen, R. M., Li, G., Jagadish, C., Burke, P. T., and Gal, M., Appl. Phys. Lett. 73 (6), 803 (1998).Google Scholar
6. Kim, K. S., Ha, K. H., Han, I. Y., Yang, M., and Lee, Y. H., Elec. Lett. 36 (3), 246 (2000).Google Scholar
7. Ashby, C. I. H., Sullivan, J. P., Newcomer, P. P., Missert, N. A., Hou, H. Q., Hammons, B. E., Hafich, M. J., and Baca, A. G., Appl. Phys. Lett. 70 (18), 2443 (1997).Google Scholar
8. Choquette, K. D., Geib, K. M., Ashby, C. I. H., Twesten, R. D., Blum, O., Hou, H. Q., Follstaedt, D. M., Hammons, B. E., Mathes, D., and Hull, R., IEEE J. Sel. Topics Quant. Elect. 3 (3), 916 (1997).Google Scholar
9. Bracht, H., Haller, E. E., Eberl, K., and Cardona, M., Appl. Phys. Lett. 74 (1), 49 (1999).Google Scholar
10. Fu, L., Deenapanray, P. N. K., Tan, H. H., Jagadish, C., Dao, L. V., and Gal, M., Appl. Phys. Lett. 76 (7), 837 (2000).Google Scholar