Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T03:59:03.362Z Has data issue: false hasContentIssue false

InNAs and GaInNAs self-assembled quantum dots and lasers grown by solid source molecular beam epitaxy

Published online by Cambridge University Press:  01 February 2011

Z.Z. Sun
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore639798, Rep. Of Singapore
S.F. Yoon
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore639798, Rep. Of Singapore
K.C. Yew
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore639798, Rep. Of Singapore
B.X. Bo
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore639798, Rep. Of Singapore
Get access

Abstract

Self-assembled Ga1−xInxNyAs1-y quantum dots were grown on GaAs by solid source molecular beam epitaxy (SSMBE). Introduction of N was achieved by a RF Nitrogen plasma source. Formation of quantum dots by S-K growth mode is confirmed by observation of standard 2D-3D RHEED pattern transition. Atomic force microscopy (AFM) and photoluminescence (PL) measurements were used to characterize the structure and optical properties of GaInNAs quantum dots. High GaInNAs quantum dot density (1010∼1011cm−2) was obtained for different In and N composition (0.3≤ x ≤1, y≤0.01). The effect of surface coverage on dot density, dot size, and optical properties was studied in detail. Adjusting the bandgap confinement by incorporating a GaNAs strain-reduction layer into the GaInNAs dot layer was found to extend the emission wavelength by 170nm. Room temperature pulsed operation is demonstrated for a Ga0.5In0.5N0.01As0.99 quantum dot laser emitting at ∼1.1μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Asada, M., Miyamoto, Y., Suematsu, Y., IEEE J. Quantum Electron. 9, 1915 (1986).Google Scholar
[2] Huffaker, D. L., Park, G., Zou, Z., Shchekin, O. B., and Deppe, D. G., Appl. Phys. Lett. 73, 2564 (1998).Google Scholar
[3] Park, G., Shchekin, O. B., Csutak, S., Huffaker, D. L., and Deppe, D. G., Appl. Phys. Lett. 75, 3267 (1999).Google Scholar
[4] Mukhametzhanov, I., Heitz, R., Zeng, J., Chen, P., and Madhukar, A., Appl. Phys. Lett. 73, 1841 (1998).Google Scholar
[5] Ustinov, V. M., Maleev, N. A., Zhukov, A. E., Kovsh, A. R., Yu Egorov, A., Lunev, A. V., Volovik, B. V., Krestnikov, I. L., Musikhin, Yu. G., Bert, N. A., Kop'ev, P. S., Alferov, Zh. I., Ledentsov, N. N., and Bimberg, D., Appl. Phys. Lett. 74, 2815 (1999).Google Scholar
[6] Nishi, K., Saito, H., Sugou, S., and Lee, J.-S., Appl. Phys. Lett. 74, 1112 (1999).Google Scholar
[7] Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., and Yazawa, Y., Jpn. J. Appl. Phys., Part 1 35, 1273 (1996).Google Scholar
[8] Nakahara, K., Kondow, M., Kitatani, T., Larson, M., and Uomi, K., IEEE Photonics Technol. Lett. 10, 487 (1998).Google Scholar
[9] Hohnsdorf, F., Koch, J., Leu, S., Stolz, W., Borchert, B., and Druminski, M., Electron. Lett. 35, 571 (1999).Google Scholar
[10] Fischer, M., Reinhardt, M., and Forchel, A., Electron. Lett. 36, 1208 (2000).Google Scholar
[11] Sopanen, M., Xin, H.P., and Tu, C.W., Appl. Phys. Lett. 76, 994 (2000).Google Scholar
[12] Makino, S., Miyamoto, T., Kageyama, T., Nishiyama, N., Koyama, F., Iga, K., J. Cryst. Growth 221, 561 (2000).Google Scholar
[13] Hakkarainen, T., Toivonen, J., Sopanen, M., and Lipsanen, H., Appl. Phys. Lett. 79, 3932 (2001).Google Scholar
[14] Pan, Z., Li, L. H., Zhang, W., Lin, Y. W., and Wu, R. H., Appl. Phys. Lett. 77, 214 (2000), and Refs.13∼15 there.Google Scholar
[15] Xin, H. P., Kavanagh, K. L., Zhu, Z. Q., and Tu, C. W., Appl. Phys. Lett. 74, 2337 (1999).Google Scholar