Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T00:32:36.868Z Has data issue: false hasContentIssue false

In-Situ Rapid Thermal Annealing of Heterostructures Grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  28 February 2011

M. Cerullo
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Julia M. Phillips
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. Anzlowar
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. Pfeiffer
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. L. Batstone
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. Galiano
Affiliation:
Materials Science and Mineral Engineering, University of California at Berkeley
Get access

Abstract

A new in-situ rapid thermal annealing (RTA) apparatus which can be used to anneal entire wafers in an ultra high vacuum environment has been designed to be used in conjunction with the epitaxial growth of heterostructures. Drastic improvement in the crystallinity of CaF2/Si(100) can be achieved with RTA, and our results suggest that RTA can be used as an on-line processing technique for novel epitaxial structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 “The Technology and Physics of Molecular Beam Epitaxy” edited by E. H. C. Parker, Plenum Press, N. Y. (1985).Google Scholar
2 “Heteroepitaxy on Silicon”, Mat. Res. Soc. Symp. Proc, vol. 67, 1986, edited by J. C. C. Fan, J. M. Poate.Google Scholar
3 “Heteroepitaxy on Silicon II”, Mat. Res. Soc. Symp. Proc. vol. 91, 1987, edited by J. C. C. Fan, Julia M. Phillips, Bor-Yeu Tsaur.Google Scholar
4 Asano, T., H. Ishiwara Thin Sol. Films 93, 143 (1982).Google Scholar
5 Ishiwara, H., Asano, T., Furukawa, S., J. Vac. Sci. Technol. B1(2), 266 (1983).CrossRefGoogle Scholar
6 Asano, T., Ishiwara, H., J. Appl. Phys. 55(10), 3566 (1984).Google Scholar
7 “Silicon Molecular Beam Epitaxy”, CRC (in press).Google Scholar
8 “Thin Films — Interfaces and Phenomena”, Mat. Res. Soc. Proc, vol. 54, 1986, edited by R. J. Nemanoch, P. S. Ho, S. S. Lau.Google Scholar
9 Fathauer, R. W., Schowalter, L. J., Appl. Phys. Lett. 45, 519 (1984).Google Scholar
10 Fathauer, R. W., Lewis, N., Schowalter, L. J., Hall, E. L. J. Vac. Sci. Technol. B3(2), 736 (1985).CrossRefGoogle Scholar
11 Schowalter, L. J., Fathauer, R. W., Goehner, R. P., Turner, L. G., DeBlois, R. W., Hashimoto, S., Peng, J.-L., Gibson, W. M., Krusius, J. P., J. Appl. Phys. 58, 302 (1985).Google Scholar
12 Asano, T., Kuriyama, Y., Ishiwara, H., Electronic Letters 21, 386 (1985).Google Scholar
13 Smith, T. P., Phillips, J. M., Augustyniak, W. M., Stiles, P. J., Appl. Phys. Lett. 45, 907 (1984).Google Scholar
14 Pfeiffer, L., Phillips, J. M., Smith III, T. P., Augustyniak, W. M., West, K. W., Appl. Phys. Lett. 46, 947 (1985).Google Scholar
15 Smith III, T. P., Phillips, J. M., People, R., Gibson, J. M., Pfeiffer, L., and Stiles, P. J. Mat. Res. Soc. Symp. Proc., vol. 54, 295 (1986).Google Scholar
16 Phillips, Julia M., Batstone, J. L., and Pfeiffer, L., Mat. Res. Soc. Symp. Proc. 91, 365 (1987) and references therein.Google Scholar
17 Phillips, J. M., Pfeiffer, L., Joy, D. C., Smith, III, T. P., Gibson, J. M., Augustyniak, W. M., and West, K. W., J. Electrochem. Soc. 133, 224 (1986).Google Scholar
18 Anzlowar, M. (to be published).Google Scholar
19 Asano, T., Ishiwara, H., and Furukawa, S., Mat. Res. Soc. Symp. Proc. 91, 337 (1987).Google Scholar