Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-21T02:28:41.623Z Has data issue: false hasContentIssue false

Instantaneous Formation of Synroc-B Phases at Ambient Pressure

Published online by Cambridge University Press:  15 February 2011

J. M. Mchale
Affiliation:
Los Alamos National Laboratory, NMT-6, Mail Stop E5 10, Los Alamos, New Mexico 87545
N. V. Coppa
Affiliation:
Los Alamos National Laboratory, NMT-6, Mail Stop E5 10, Los Alamos, New Mexico 87545
Get access

Abstract

The titanate based nuclear waste immobilization medium, Synroc-B, has been synthesized at atmospheric pressure from freeze dried nitrate precursors. Complete formation of the phase assemblage (CaTiO3, CaZrTi2O7, and BaAl2Ti5O14) occurred upon calcination of the nitrate precursor after only 10 minutes at 1100°C. This improvement in the preparation conditions may lead to practical application of the material in the safe disposal of high level nuclear waste and the immobilization of other strategic nuclear materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For reviews of this topic see (a) McCarthy, G. J., editor, Scientific Basis for Nuclear Waste Management, Vol.1, Plenum Press (New York, 1979). (b) W. Lutze and R. C. Ewing, editors, Radioactive Waste Forms for the Future, Elsevier Scientific (Amsterdam, 1988).Google Scholar
2. Hatch, L. P., Am. Sci. 41, 410 (1953).Google Scholar
3. Ringwood, A. E., Safe Disposal of High Level Nuclear Reactor Wastes: A New Strategy, Australian National University Press (Norwolk, Connecticut, 1978).Google Scholar
4. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W. and Major, A., Nature 278, 219 (1979).Google Scholar
5. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W. O., and Major, A., Geochem. J. 13, 141 (1979).. For review articles on immobilization of HLNW in ceramic materials see reference 1 and (a) D. R. Clark, Ann. Rev. Mater. Sci. 13, 191 (1983). (b) P. E. Fielding and T. J. White, J. Mater. Res. 2, 387 (1987), (c) R. C. Ewing and W. Lutze, Editors, Mater. Res. Soc. Bull. 19, no. 12, (1994), special issue on Nuclear Waste Disposal.Google Scholar
7. Woolfrey, J. L., Levins, D. M., Smart, R. St. C., and Stephenson, M., Am. Ceram. Soc. Bull. 66, 1739 (1987).Google Scholar
8. Cook, R. F., Lawn, B. R., Dabbs, T. P., Reeve, K. D., Ramm, E. J., and Woolfrey, J. L., J. Am. Ceram. Soc. 65, C172 (1982).Google Scholar
9. Smith, K. L., Lumpkin, G. R., Blackford, M. G., Day, R. A., and Hart, K. P., J. Nucl. Mater. 190, 287 (1992).Google Scholar
10. Dosch, R. G., Northrup, C. J., and Headley, T. J., J. Am. Ceram. Soc. 68, 330 (1985).Google Scholar
11. Kennedy, C. R., Flynn, K. F., and Arons, R. M., Nucl. Technol. 56, 278 (1982).Google Scholar
12. Werme, L., Bjorner, I. K., Bart, G., Zwicky, H. U., Grambow, B., Lutze, W., Ewing, R. C., and Magrabi, C., J. Mater. Res. 5, 1130 (1990).Google Scholar
13. Lutze, W. and Ewing, R. C., Mat. Res. Soc. Symp. Proc. Vol.127, 13 (1989).Google Scholar
14. See Grambow, B., in reference 6(c).Google Scholar
15. Schnettler, F. J., Monforte, F. R., and Rhodes, W. W., Sci. Ceram. 4, 79 (1968).Google Scholar
16. Tseung, A. C. C. and Bevan, H. L., J. Mater. Sci. 5, 604 (1970).Google Scholar
17. See Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M. and Ramm, E. J., in 1(b).Google Scholar
18. Coppa, N. V., Application of Freeze Drying Technology to the Decontamination of Radioactive Liquids, in: Polution Prevention Technologies for Plutonium, (LALP-93-92), and references therein.Google Scholar
19. Chemical analysis of the titanyl nitrate we used in this study has shown a less than 2(NO3) to 1Ti ratio in the material. Hence we refer to it as “TiO(NO3)2” throughout this work. The true structure is currently being investigated.Google Scholar
20. McHale, J. M., McIntyre, P. C., Sickafus, K. E., and Coppa, N. V., Submitted to J. Mater. Res., March, 1995.Google Scholar
21. Coppa, N. V., Myer, G. H., Salomon, R. E., Bura, A., O'Reilley, J. W., Crow, J. E., and Davies, P. K., J. Mater. Res. 7, 2017 (1992).Google Scholar
22. Vance, E. R., Ball, C. J., Blackford, M. G., Cassidy, D. J., and Smith, K. L., J. Nuclear Mater. 175, 58 (1990).Google Scholar
23. All Ba2+ and Al3+ ions go into the BaAl2 Ti5O14 phase. Therefore the Ba2+ to Al3+ ratio should ideally be 1 to 2.Google Scholar
24. Buykx, W. J., Cassidy, D. J., Webb, C. E., and Woolfrey, J. L., Ceram. Bull. 60, 1285 (1981).Google Scholar
25. Hartman, J. S. and Vance, E. R., J. Mater. Res. 9, 1714 (1994).Google Scholar
26. Matthews, R. B., Ceram. Bull. 71, 96 (1992).Google Scholar