Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-01T19:52:38.928Z Has data issue: false hasContentIssue false

Interaction of Oxygen with Nanophase Carbons Investigated by Electron Spin Resonance Spectroscopy

Published online by Cambridge University Press:  10 February 2011

A. Manivannan
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506-6315
A. Punnoose
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506-6315
M.S. Seehra
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506-6315
Get access

Abstract

Interaction of oxygen with three commercial activated carbons (GX203, P1400 and MEED50 supplied by PICA USA Inc., with BET surface areas of 1000, 1150 and 2000 m2/g respectively) is investigated using 9 GHz electron spin resonance (ESR) spectroscopy. All three carbons give a single ESR line with g = 2.0028(3), but the linewidth ΔH and the spin concentration Ns, are strongly affected by exposure to oxygen. The ESR parameters (g, ΔH, Ns) are measured for different partial pressures of oxygen. For the highly evacuated samples, δH ≃ 1.2 Oe and Ns ≃ 1019/gm and these results are interpreted in terms of uncompensated surface dangling bonds. Oxygen exposure broadens the line and reduces Ns, in direct relation to the surface areas of the carbons and the effect is reversible. Possible effects of the paramagnetic oxygen on dangling bonds are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rodriguez-Reinoso, F. and Linares-Solano, A. in Chemistry and Physics of Carbon, Vol. 21 edited by Thrower, P. A. (Marcel Dekker, NY 1989) pp 1146.Google Scholar
2. Smisek, M. and Cemy, S.; Active Carbon Manufacture, Properties and Applications (Elsevier, NY 1970). 369 Google Scholar
3. Dresselhaus, M. S., Fung, A. W. P., Rao, A. M., diVittorio, S. L., Kuriyama, K., Dresselhaus, G., and Endo, M., Carbon 30, 1065 (1992).Google Scholar
4. Manivannan, A., Chirila, M., Giles, N. C. and Seehra, M. S., Carbon 37, 1741 (1991).Google Scholar
5. Ibrahim, M. M. and Seehra, M. S., Amer. Chem. Soc. Fuel Chem. Preprints 37, 1131 (1992).Google Scholar
6. Seehra, M. S. and Ghosh, B., J. Anal. Appl. Pyrolysis 13, 209 (1988).Google Scholar
7. Lewis, I. C. and Singer, L. S. in Chemistry and Physics of Carbon Vol. 17, edited by Walker, P. L. Jr., and Thrower, P. A. (Marcel Dekker, NY 1981) pp 188.Google Scholar
8. Petrakis, L. and Grandy, D. W. in Free Radicals in Coals and Synthetic Fuels (Elsevier, NY, 1983).Google Scholar
9. Retcofsky, H. L., Stark, J. M. and Friedel, R. A., Anal. Chem. 40, 1699 (1968).Google Scholar
10. Seehra, M. S. and Ibrahim, M. M. in Catalysis Vol. 12 (The Royal Soc. of Chemistry U.K. 1996) pp 302320.Google Scholar
11. Silbernagel, B. G., Gebhard, L. A. and Cyrkacz, G. R. in Magnetic Resonance: Introduction, Advanced Topics and Applications to Fossil Energy, edited by Petrakis, L. and Fraissard, P. (D. Reidel Publishing Co., Dordrecht, 1984) pp 645653.Google Scholar
12. Che, M. and Tench, A. J., Adv. Catal. 32, 1 (1983).Google Scholar
13. Wong, N.-B., Taarit, Y. B. and Lunsford, J. H., J. Chem. Phys. 60, 2148 (1974).Google Scholar
14. Boudart, M., Delbouille, A. J., Derouane, E. G., Indovina, V. and Walters, A. B., J. Am. Chem. Soc. 94, 6622 (1972).Google Scholar
15. Foley, H. C., Stevens, M., Acharya, M. and Kane, M., Mat. Res. Soc. Symp. Proc. (MRS 1997) Vol. 454, pp 38.Google Scholar
16. He, G., Shankar, R. A., Chzhan, M., Samouilov, A., Kuppusamy, P., and Zweier, J. L., Proc. Natl. Acad. Sci. 96, 4586 (1999).Google Scholar