Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-30T05:10:41.432Z Has data issue: false hasContentIssue false

Interfacial Fracture of Thin Polymer Films on Aluminum

Published online by Cambridge University Press:  01 February 2011

A. Strojny
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 now with Xerox Corporation, Webster, NY 14580
N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore CA 94550
J. A. Emerson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
W. R. Even Jr
Affiliation:
Sandia National Laboratories, Livermore CA 94550
W. W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

In this study we combined nanoindentation techniques with mechanics-based models to determine interfacial fracture energies in a 16 μm thick styrene-acrylate film on T-6061 aluminum sheet and a 1.6 μm thick Epon 828/T403 epoxy film on sputtered aluminum. For the styrene-acrylate film, interfacial fracture occurred at a fracture energy of 8.9 J/m2. The epoxy film failed much more readily with a fracture energy of 0.2 J/m2. However, the addition of an adhesion-promoting interlayer improved the epoxy film performance to the point where the films did not fail even when the indentations exceeded the film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Briscoe, B. J., Fiore, L., and Pelillo, E., J. Phys. D: Appl. Phys., 31, 2395 (1998).Google Scholar
2. Thouless, M. D., Acta Metall., 36, 3131 (1988).Google Scholar
3. Ritter, J. E., Lardner, T. J., Rosenfeld, L., and Lin, M. R., J. Appl. Phys., 66, 3626 (1989).Google Scholar
4. Rosenfeld, L. G., Ritter, J. E., Lardner, T. J., and Lin, M. R., J. Appl. Phys., 67, 3291 (1990).Google Scholar
5. Alba, S., Loubet, J. L., and Vovelle, L., J. Adhesion Sci. Technol., 7, 131 (1993).Google Scholar
6. Rother, B., J. Mater. Sci., 31, 6025 (1996).Google Scholar
7. Liechti, K. M. and Chai, Y. S., J. Appl. Mech., 59, 680 (1992).Google Scholar
8. Stoye, D. and Freitag, W., Paints, Coatings, and Solvents, 2nd edition, Wiley-VCH, Weinheim (1998) p. 139.Google Scholar
9. Strojny, A., Ph. D. Thesis, University of Minnesota, Minneapolis, MN (1999));Google Scholar
Nesbitt, S., Ph. D. Thesis, University of Connecticut, Storrs, CT (1989).Google Scholar
10. Lucas, B. N., Oliver, W. C., and Swindeman, J. E., in Fundamentals of Nanoindentation and Nanotribolgy, ed. Moody, N. R., Gerberich, W. W., Burnham, N., and Baker, S. P. (Mater. Res. Soc. Proc, 522, Pittsburgh, PA, 1998) pp. 314.Google Scholar
11. Lucas, B. N., Rosenmayer, C. T., and Oliver, W. C., in Thin Films-Stresses and Mechanical Properties VII, ed. Cammarata, R. C., Nastasi, M., Busso, E. P., and Oliver, W. C. (Mater. Res. Soc. Proc, 505, Pittsburgh, PA, 1998) pp. 97102.Google Scholar
12. Oliver, W. C. and Pharr, G.M., J. Mater. Res., 7, 1564 (1992).Google Scholar
13. Engineeing Materials Handbook, vol. 2, Engineering Plastics, ASM International, Metals Park, OH (1998).Google Scholar
14. Marsh, D. M., Proc. Roy. Soc. A, 279, 420 (1963).Google Scholar
15. Suo, Z. and Hutchinson, J. W., Mater. Sci. Engng., A107, 135 (1989).Google Scholar
16. Hutchinson, J. W. and Suo, Z., in Advances in Applied Mechanics, ed. Hutchinson, J. W. and Wu, T. Y. (Academic Press Inc., 29, New York, 1992) pp. 63191.Google Scholar
17. Kent, M. S., Reedy, E. D., and Stevens, M. J., Molecular-to-Continuum Fracture Analysis of Thermosetting Polymer/Solid Interfaces, Sandia Report SAND2000–0026 (2000).Google Scholar