Skip to main content Accessibility help

Interfacial Ion Fluxes at Nanostructured Thin Films

  • Nancy N. Kariuki (a1), Jin Luo (a1), Li Han (a1), Mathew M. Maye (a1), Melissa J. Patterson (a1), Laura Moussa (a1), Maria Hepel (a2) and Chuan-Jian Zhong (a1)...


Thin films derived from nanocrystal cores and functionalized linkers provide large surface-to-volume ratio and three-dimensional ligand framework. This paper describes the results of an investigation of the interfacial ion fluxes associated with redox reactivity and structural properties of such films using cyclic voltammetry, electrochemical quartz-crystal nanobalance, surface infrared reflection spectroscopy, and X-ray photoelectron spectroscopy. Films from gold nanocrystals of 2 nm core sizes and 11-mercaptoundecanoic acid were studied as a model system. First, the film coated on electrode surface displays redox-like voltammetric waves characteristic of the deprotonation-reprotonation of the carboxylic acid groups in the nanostructured network. This process is accompanied by mass changes. Secondly, the film exhibits capability for the complexation of copper ions via the nanostructured carboxylate framework. This process is also accompanied by interfacial fluxes of electrolyte cations across the electrode | film | electrolyte interface which compensate electrostatically the fixed negative charges in the reduction process.



Hide All
1. Shipway, N., Katz, E., Willner, I., ChemPhysChem, 1, 18 (2000).
2. Niemeyer, C. M., Angewandte Chemie - International Edition, 40, 4128 (2001).
3. Gutierrez, E., Miller, T. C., Gonzalez-Redondo, J. R., Holcombe, J. A., Environ. Sci. & Technol., 33, 1664 (1999).
4. Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., Rudzinski, W. E., J. Controlled Release, 70, 1 (2001),
5. Hepel, M. and Mahdavi, F., Microchem. J., 56, 54 (1997).
6. Kariuki, N. N., Han, L., Luo, J., Nam, K. L., Patterson, M. J., Maye, M. M., Liu, G. J., Zhong, C. J., Langmuir, 18, 8255 (2002).
7. Bethell, D., Brust, M., Schiffrin, D. J., Kiely, C. J., J. Electroanal. Chem. 409, 137 (1996); J. Am. Chem. Soc., 120, 12367 (1998).
8. Zhong, C. J. and Maye, M. M., Advanced Materials, 13, 1507 (2001).
9. Hostetler, M. J., Green, S. J., Stokes, J. J., Murray, R. W., J. Am. Chem. Soc., 118, 4212 (1996);
Templeton, A. C., Hostetler, M. J., Kraft, C. T., Murray, R. W., J. Am. Chem. Soc., 120, 1906 (1998);
Templeton, A. C., Hostetler, M. J., Warmoth, E. K., Chen, S., Hartshorn, C. M., Krishnamurthy, V. M., Forbes, M. D. E., Murray, R. W., J. Am. Chem. Soc., 120, 4845 (1998).
10. Leibowitz, F. L., Zheng, W. X., Maye, M. M., Zhong, C. J., Anal. Chem., 71, 5076 (1999);. 72, 2190 (2000).
11. Han, L., Maye, M. M., Leibowitz, F. L., Ly, N. K., Zhong, C. J., J. Mater. Chem. 11, 1259 (2001).
12. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., Whyman, R., J. Chem. Soc., Chem. Commun., 801 (1994).
13. White, H. S., Peterson, J. D., Cui, Q., Stevenson, K. J., J. Phys. Chem. B., 102, 2930. (1998).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed