Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T07:27:32.159Z Has data issue: false hasContentIssue false

Intracellular uptake of poly(ethylene glycol) and folic acid modified magnetite nanoparticles

Published online by Cambridge University Press:  21 March 2011

Yong Zhang
Affiliation:
Department of Materials Science & Engineering, University of Washington Seattle, WA 98195-2120, U.S.A.
Nathan Kohler
Affiliation:
Department of Materials Science & Engineering, University of Washington Seattle, WA 98195-2120, U.S.A.
Miqin Zhang
Affiliation:
Department of Materials Science & Engineering, University of Washington Seattle, WA 98195-2120, U.S.A.
Get access

Abstract

Superparamagnetic magnetite nanoparticles were surface-modified with poly (ethylene glycol) (PEG) or folic acid, to resist the protein adsorption and avoid their recognition by macrophage cells, and to improve their cell internalization and ability to target specific cells. The nanoparticle uptake into human osteosarcoma cells, MG63, was visualized using both fluorescence and confocal microscopy, and quantified using inductively coupled plasma emission spectroscopy (ICP) measurement. Fluorescence and confocal microscopy results showed that the nanoparticles were internalized into the cells after the cells were cultured for 48h in the medium containing the nanoparticles modified with PEG or folic acid. ICP measurements indicated that both the PEG and folic acid modification increased the amount of the nanoparticle uptake into the cells, in comparison with that of unmodified nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weissleder, R., Bogdanov, A., Adv. Drug Delivery Rev. 16, 321 (1995).Google Scholar
2. Chouly, C., Pouliquen, D., Lucet, I., Jeune, J. J., Jallet, P., J. Microencapsulation. 13, 245 (1996).Google Scholar
3. Chan, D. C. F., Kirpotin, D., Bunn, P. A., J. Magn. Magn. Mat. 122, 374 (1993).Google Scholar
4. Grüttner, C., Teller, J., Schütt, W., in Scientific and Clinical Applications of Magnetic Carriers, edited by Häfeli, U., Schütt, W., Teller, J., Zborowski, M. (Plenum Press, New York, 1997), p. 53.Google Scholar
5. Miltenyi, S., Muller, W., Weichel, W., Radbruch, A., Cytometry. 11, 231 (1990).Google Scholar
6. Hagan, S. A., Coombes, A. G. A., Garnett, M. C., Dunn, S. E., Davies, M. C., Illum, L., Davis, S. S., Langmuir. 12, 2153 (1996).Google Scholar
7. Yeh, T. C., Zhang, W., Ildstad, S. T., Ho, C., Magn. Reson. Med. 30, 617 (1993).Google Scholar
8. Schoepf, U., Marecos, E., Melder, R., Jain, R., Weissleder, R., Bio Techniques. 24, 642 (1998).Google Scholar
9. Weitman, S. D., Lark, R. H., Coney, L. R., Fort, D. W., Frasca, V., Zurawski, V. R., Kamen, B. A., Cancer. Res. 52, 3396 (1992).Google Scholar
10. Coney, L. R., Tomassetti, A., Carayannopoulos, L., Frasca, V., Kamen, B. A., Colnaghi, M. I., Zurawski, W. R., Cancer. Res. 51, 6125 (1991).Google Scholar
11. Antony, A. C., Blood 79, 2807 (1992).Google Scholar
12. Qu, S. C., Yang, H. B., Ren, D. W., Kan, S. H., Zou, G. T., Li, D. M., Li, M. H., Journal of Colloid and Interface Science 215, 190 (1999).Google Scholar
13. Hafeli, U. O., Pauer, G. J., J. Magn. Magn. Mat. 194, 76 (1999).Google Scholar
14. Yamazaki, M. and Ito, T., Biochemistry 29, 1309 (1990).Google Scholar