Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-02T17:14:50.672Z Has data issue: false hasContentIssue false

Investigations On In Situ Nanocrystallization And Magnetic Properties For Amorphous Fe78Si9B13 Ribbons

Published online by Cambridge University Press:  21 February 2011

Xiangeheng Sun
Affiliation:
Instituto Nacional de Investigaciones Nucleares (ININ), Km.36.5, Carr. Mexico-Toluca, C.P.52045 Ocoyoacac, Edo. de Mexico, Mexico Instituto Nacional de Investigaciones Nucleares (ININ), Km.36.5, Carr. Mexico-Toluca, C.P.52045 Ocoyoacac, Edo. de Mexico, Mexico E-mail: sunxc@nuclear.inin.mx
A. Cabral-Prieto
Affiliation:
Instituto Nacional de Investigaciones Nucleares (ININ), Km.36.5, Carr. Mexico-Toluca, C.P.52045 Ocoyoacac, Edo. de Mexico, Mexico
M. Jose Yacaman
Affiliation:
Instituto Nacional de Investigaciones Nucleares (ININ), Km.36.5, Carr. Mexico-Toluca, C.P.52045 Ocoyoacac, Edo. de Mexico, Mexico Instituto de Fisica, National University of Mexico, Mexico D.F., Mexico
Wensheng Sun
Affiliation:
State Key Lab for RSA, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110015, P. R., China
Get access

Abstract

The amorphous state of ferromagnetic Fe78Si9B13 (Metglas 2605S-2) and its nanocrystallization were investigated by in situ transmission electron microscope (TEM), Xray diffraction (XRD), Mossbauer spectroscopy (MS), differential scanning calorimeters (DSC) and magnetic moment measurements. The Mössbauer spectrum exhibited an essentially symmetric hyperfine field pattern of 259KOe in as-quenched amorphous state at room temperature. The Curie and crystallization temperature were determined to be Tc=708K and Tx= 803K, respectively. The Tx value was in good agreement with DSC measurement results. The occupied fraction of the nanocrystalline phases of α-Fe(Si) and Fe2B at in situ optimum annealing temperature was about 57% and 43%, respectively. It is notable that the magnetization of the amorphous phase decreases more rapidly with increasing temperature than those of nanocrystalline ferromagnetism, suggesting the presence of the distribution of exchange interaction in the amorphous phase or high metalloid contents.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rawers, J.C., R, , McCune, A. and Adams, A., J. Mater. Sci. Lett., 7, 958 (1988)Google Scholar
2. Bang, J.Y. and Lee, R.Y., J. Mater. Sci., 26, 4961 (1991);Google Scholar
Chang, C.F. and J. Marti J. Mater. Sci., 18, 2297, 1983.Google Scholar
3. Yoshizawa, Y., Oguma, S. and Yamauchi, K. J. Appl. Phys., 64(10), 6044(1988)Google Scholar
4. Lu, K., Wang, J.T., and Wei, W.D., J. Appl. Phys., 69, 522(1991)Google Scholar
5. Tong, H.Y., Wang, J.T., Jiang, H.G. and Lu, K. J. Non-Cryst. Solids 150, 444(1992)Google Scholar
6. Liu, X.D., Lu, K., and Hu, Z.Q Mater. Sci. Eng. A179/180, 386(1994)Google Scholar
7. Suzuki, K., Kikuchi, M., Makino, A., Inoue, A. and Masumoto, T., Mater. Trans. Jpn. Inst. Met., 32, 961(1991)Google Scholar
8. nakabayashi, H., Doi, M., Matsui, M., and Doyama, M. Mat. Res. Soc. Symp. Proc. 286, 227 (1993)Google Scholar
9. Kim, C.S., Kim, S. B., Lee, J.S. and Noh, T.H. J. Appl. Phys. 79(8) 5459 (1996)Google Scholar
10. Stems, M.B. Phys. Rev., 129, 1136 (1963)Google Scholar
11. Tebble, R.S. and Craik, D.J., Magnetic Materials (Wiley-Interscience, NewYork, 1969), P. 51 Google Scholar