Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T14:20:25.423Z Has data issue: false hasContentIssue false

Ion Beam Mixing Of Marker Atoms in Mo and Ru and Heat of Mixing

Published online by Cambridge University Press:  26 February 2011

S.-J. Kim
Affiliation:
California Institute of Technology, Pasadena, CA 91125
B. M. Paine
Affiliation:
California Institute of Technology, Pasadena, CA 91125
M-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125
R. S. Averback
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The effect of the heat of mixing, ΔHm, on the ion beam mixing of marker systems was studied. The matrices for tne experiment were Mo and Ru, and marker atoms were Ti, Cr, Mn, Ni, Hf, Ta, Pt, and Au. These markers and matrices have heat of mixing ranging from +65 to -227 kJ/mol. Irradiations were done with 300 keV Kr at 77 and 300 K, with room temperature backscattering spectrometry analysis. There was no correlation between the mixing results and heat of mixing, which is consistent with the idea of ion beam mixing of dilute marker system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haff, P. K. and Switkowski, Z. E., J. Appl. Phys., 48, 3383 (1977).Google Scholar
2. Sigmund, P., Appl. Phys. Lett., 25, 169 (1974).Google Scholar
3. Dienes, G. J. and Damask, A. C., J. Appl. Phys., 29, 1713 (1958).Google Scholar
4. Wang, Z. L., Westendorp, J. F. M., Doorn, S., Saris, F. W., Materials Research Society Proceedings, Vol. 7, Eds. Picraux, S. T., and Choyke, W. J., (1981) p. 59.Google Scholar
5. Westendorp, J. F. M., Wang, Z. L., Saris, F. W., Nucl. Instrum. and Methods, 194, 543 (1982).Google Scholar
6. Banwell, T., Liu, B. X., Golecki, I., and Nicolet, M-A., Nucl. Instrum. Methods, 209/210, 125 (1983).Google Scholar
7. White, C.W., Farlow, G., Narayan, J., Clark, G. J., and Baglin, J. E. E., Mat. Lett., 5A, 367 (1984).Google Scholar
8. Cheng, Y.-T., Van Rossum, M., Nicolet, M-A., and Johnson, W. L., Appl. Phys. Lett., 45, 185 (1984).Google Scholar
9. Johnson, W. L., Cheng, Y.-T., Van Rossum, M. and Nicolet, M-A., Nucl. Instrum. Methods, B7/8, 657 (1985).Google Scholar
10. d'Heurle, F., Baglin, J. E. E., and Clark, G. J., J. Appl. Phys., 57, 1426 (1985).Google Scholar
11. Bhattacharya, R. S. and Rai, A. K., J. Appl. Phys., 58, 248 (1985).Google Scholar
12. Hansen, M., and Anderko, K., Constitution of Binary Alloys, (McGraw-Hill, New York, 1958).Google Scholar
13. Biersack, J. P., and Haggmarsk, L. G., Nucl. Instrum. and Methods, 174, 257 (1980).Google Scholar
14. Miedema, A. R., Philips Tech. Rev., 36, 217 (1976).Google Scholar
15. Matteson, S., Paine, B. M., Grimaldi, M. G., Mezey, G. and Nicolet, M-A., Nucl. Instrum. and Methods, 182/183, 43 (1981).Google Scholar