Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-16T14:57:28.486Z Has data issue: false hasContentIssue false

Ion Implantation of Conducting Ladder and Rigid-Rod Polymers

Published online by Cambridge University Press:  25 February 2011

A. Bums*
Affiliation:
Department of Physics, The Ohio State University, Columbus, Ohio 43210–1106, USA
Z. H. Wang
Affiliation:
Department of Physics, The Ohio State University, Columbus, Ohio 43210–1106, USA
G. Du
Affiliation:
Department of Physics, The Ohio State University, Columbus, Ohio 43210–1106, USA
J. Joo
Affiliation:
Department of Physics, The Ohio State University, Columbus, Ohio 43210–1106, USA
A. J. Epstein
Affiliation:
Department of Physics, The Ohio State University, Columbus, Ohio 43210–1106, USA
J. A. Osaheni
Affiliation:
Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
S. A. Jenekhe
Affiliation:
Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
C. S. Wang
Affiliation:
University of Dayton Research Institute, Dayton, OH 45469, USA
*
* Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139.
Get access

Abstract

We report optical, thermal, and transport studies on Kr+ implanted ladder (BBL) and rigid-rod ( PBO and PBZT) polymers, with an ion energy of 200 keV and dosage of 4 × 1016 / cm2. Both pristine and ion implanted polymers were studied using X-ray photo-electron spectroscopy (XPS), optical spectroscopy (IR and UV-Vis), thermogravimetric analysis (TGA), and temperature dependent DC conductivity (σ(T)). The XPS and IR results show a reduction in the heteroatoms and increase in the relative carbon content. After ion implantation, each polymer had a similar electronic structure, showing broad band metallic behavior. TGA data shows that each implanted polymer retains its thermal stability. σ(T) of the implanted polymers has the weakest temperature dependence of any conducting polymer reported, in accord with a disordered metal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., and Heeger, A. J., J. Chem. Soc. Chem. Commun 1977, 577.Google Scholar
2. Tsukamoto, J., Takahashi, A., and Kawasaki, K., Jpn. J. Appl. Phys, 29, 125 (1990).Google Scholar
3. Schoch, K. F. Jr and Bartko, J., Polymer 28, 556 (1987).Google Scholar
4. Isotalo, H., Stubb, H., and Kuivalainen, P., Syn. Metals, 28, C305 (1989).Google Scholar
5. Venkatesan, T., Forrest, S. R., Kaplan, M. L., Schmidt, P. H., Murray, C. A., Brown, W. L., Wilkens, B. J., Roberts, R. F., Rupp, L. Jr, and Schonhorn, H., J. Appl. Phys, 56, 2776 (1984).Google Scholar
6. Dresselhaus, M. S., Wasserman, B., and Wnek, G. E. in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Hollan, O. W. Clayton, C. R., and White, C. W. (Mater. Res. Soc. Proc. 27, Boston, MA 1984)pp. 413.Google Scholar
7. Elman, B. S., Sandman, D. J., and Newkirk, M. A., Appl. Phys. Lett. 46, 100 (1985).Google Scholar
8. Lovinger, A. J., Forrest, S. R., Kaplan, M. L., Schmidt, P. H., and Venkatesan, T., J. Appl. Phys. 55, 476 (1984).Google Scholar
9. Nalwa, H. S., Polymer 32, 802 (1991).Google Scholar
10. Jenekhe, S. A. and Johnson, P. O., Macromolecules 23, 4419 (1990).Google Scholar
11. Jenekhe, S. A. and Tibbetts, S. J., Polymer, J. Sci. B26, 201 (1988).Google Scholar
12. Wolfe, J‥F. and Arnold, F. E., Macromolecules 14 909 (1981).Google Scholar
13. Shen, D. Y. and Hsu, S. L., Polymer 23, 969 (1982).Google Scholar
14. Wang, Z. H., Burns, A., Du, G., Joo, J., Osaheni, J. A., Jenekhe, S. A., Wang, C. S., and Epstein, A. J., To be published.Google Scholar
15. Mooij, J. H., Phys. Stat. Sol. A17, 521 (1973).Google Scholar
16. Kaiser, A. B., Phys. Rev. Lett. 58, 1384 (1987).Google Scholar
17. Hauser, J. J., J. Non-Cryst. Solids 23, 21 (1977).Google Scholar