Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-22T17:24:19.421Z Has data issue: false hasContentIssue false

Ion-Exchangeable Oxides with Layered Perovskite Structures as Photocatalysts for Overall Water Splitting

Published online by Cambridge University Press:  10 February 2011

T. Takata
Affiliation:
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan, kdomen@res.titech.ac.jp
K. Shinohara
Affiliation:
Nikon Corp. 1–10–1 Asamizodai, Sagamihara 228, Japan
A. Tanaka
Affiliation:
Nikon Corp. 1–10–1 Asamizodai, Sagamihara 228, Japan
M. Hara
Affiliation:
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan, kdomen@res.titech.ac.jp
J. N. Kondo
Affiliation:
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan, kdomen@res.titech.ac.jp
K. Domen
Affiliation:
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan, kdomen@res.titech.ac.jp
Get access

Abstract

A novel series of photocatalysts for an overall water splitting is reported. The catalysts have a layered perovskite type structure with a general formula of A2−xLa2Ti3−xNbxO10 (A = K, Rb, Cs; x = 0, 0.5, 1.0). The catalysts, except for the one with x=1.0, are spontaneously hydrated, and the band gap irradiation induced efficient evolution of H2 and O2 in a stoichiometric ratio from an aqueous alkaline solution when a proper amount of Ni loading was made. The reaction mechanism of water splitting on these catalysts is discussed on the bases of the structural study of the catalysts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Sayama, K., Arakawa, H., J. Photochem. Photobioi. A: Chem. 77, 243 (1994).Google Scholar
(2) Inoue, Y., Kubokawa, T., Sato, K., J. Phys. Chem. 95, 4095 (1991).Google Scholar
(3) Inoue, Y., Asai, Y., Sato, K., J. Chem. Soc, Faraday Trans. 90, 797 (1994).Google Scholar
(4) Domen, K., Naito, S., Soma, M., Onishi, T., Tamaru, K., J. Phys. Chem. 86, 3657 (1982).Google Scholar
(5) Kudo, A., Domen, K., Maruya, K., Onishi, T., Chem. Phys. Lett. 133, 517 (1987).Google Scholar
(6) Domen, K., Yoshimura, J., Sekine, T., Tanaka, A., Onishi, T., Catal. Lett. 4, 339 (1990).Google Scholar
(7) Kudo, A., Tanaka, A., Domen, K., Maruya, K., Aika, K., Onishi, T., J. Catal. 111, 67 (1988).Google Scholar
(8) Sayama, K., Tanaka, A., Domen, K., Maruya, K., Onishi, T., J. Catal. 124, 541 (1990).Google Scholar
(9) Yoshimura, J., Ebina, Y., Kondo, J., Domen, K., J. Phys. Chem. 97, 1970 (1939).Google Scholar
(10) Sayama, K., Tanaka, A., Domen, K., Maruya, K., Onishi, T., J. Phys. Chem. 95, 1346 (1991)Google Scholar
(11) Kudo, A., Sayama, K., Tanaka, A., Asakura, K., Domen, K., Maruya, K., Onishi, T., J. Catal. 120, 337 (1989).Google Scholar
(12) Gopalakrishnan, J., Bhat, V., Inorg. Chem. 26, 4299 (1987).Google Scholar
(13) Gopalakrishnan, J., Chem. Mat. 7, 1265 (1995).Google Scholar
(14) Uma, S., Raju, A. R., Gopalakrishnan, J., J. Mat. Chem. 3, 709 (1993).Google Scholar
(15) Domen, K., Kudo, A., Onishi, T., J. Phys. Chem. 90, 292 (1986).Google Scholar
(16) Domen, K., Kudo, A., Onishi, T., J. Catal. 102, 92 (1986).Google Scholar