Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-15T10:20:11.522Z Has data issue: false hasContentIssue false

Ionic Conductivity of the new Fluoride-Ion Conductor Casn2F6

Published online by Cambridge University Press:  11 February 2011

Michael F. Bell
Affiliation:
Laboratory of Solid State Chemistry and Mössbauer spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
Georges DéNés*
Affiliation:
Laboratory of Solid State Chemistry and Mössbauer spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
Zhimeng Zhu
Affiliation:
Laboratory of Solid State Chemistry and Mössbauer spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
*
1 To whom all correspondence should be addressed: gdenes@vax2.concordia.ca
Get access

Abstract

Metastable CaSn2F6 has been prepared for the first time and characterized. It is a well crystalline material that leaches SnF2 in water to give the microcrystalline fluorite-type Ca1-xSnxF2 solid solution. In both materials, tin(II) is covalently bonded to fluorine, and thus carries a stereoactive non-bonding electronic pair. The electrical conductivity of CaSn2F6 was measured by the complex impedance method. The CaSn2F6 material was found to be a mixed conductor (τi = 0.50), with a F- conductivity a little below that of α-SnF2. On heating to 250°C, it decomposes irreversibly to give SnF2 and probably amorphous CaF2 (undetected).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ansel, D., Debuigne, J., Dénès, G., Pannetier, J. and Lucas, J., Ber. Bunsenges. Phys. Chem. 82, 376 (1978).Google Scholar
2. Dénès, G., Birchall, T., Sayer, M. and Bell, M.F., Solid State Ionics 13, 213 (1984).Google Scholar
3. Dénès, G., Milova, G., Madamba, M.C. and Perfiliev, M., Solid State Ionic 86–88, 77 (1996).Google Scholar
4. Donaldson, J. D. and Senior, B. J., J. Chem. Soc. (A), 1821 (1967).Google Scholar
5. Dénès, G., Pannetier, J., and Lucas, J., C.R. Acad. Sc. Paris 280C, 831 (1975).Google Scholar
6. Dénès, G., Yu, Y.H., Tyliszczak, T. and Hitchcock, A.P., J. Solid State Chem. 91, 1 (1991).Google Scholar
7. Dénès, G., Yu, Y.H., Tyliszczak, T. and Hitchcock, A.P., J. Solid State Chem. 104, 239 (1993).Google Scholar
8. Collin, A., Dénès, G., Le Roux, D., Madamba, M.C., Parris, J. M. and Salaün, A., Intern. J. Inor. Mater. 1, 289 (1999).Google Scholar
9. Dénès, G., Madamba, M.C., Muntasar, A., Peroutka, A., Tam, K. and Zhu, Z., Mössbauer Spectroscopy in Materials Science, Miglierini, M. and Petridis, D. (eds.), NATO Science Series, 3. High Technology, Vol. 66, Kluwer Academic Publishers, Dordretch (Netherlands), 25 (1999).Google Scholar
10. Dénès, G., Solid State Ionics IV, Mater. Res. Soc. Symp. Proc. 369, 295 (1995).Google Scholar
11. Kanno, R., Ohno, K., Izumi, H., Kawamoto, Y., Kamiyama, T., Asano, H. and Izumi, E., Solid State Ionics 70/71, 253 (1994).Google Scholar
12. Donaldson, J. D. and Silver, J., J. Solid State Chem. 18, 117 (1976).Google Scholar
13. Claudy, P., Letoffe, J. M., Vilminot, S., Granier, W., Al Ozaibi, Z. and Cot, L., J. Fluorine Chem. 18, 203 (1981).Google Scholar
14. Dénès, G., Mat. Res. Bull. 15, 807 (1980)Google Scholar