Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T23:56:24.218Z Has data issue: false hasContentIssue false

A Kinetic Model for GaN Growth

Published online by Cambridge University Press:  10 February 2011

D. D. Koleske
Affiliation:
Laboratory for Advanced Material Synthesis, Code 6861, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
A. E. Wickenden
Affiliation:
Laboratory for Advanced Material Synthesis, Code 6861, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
R. L. Henry
Affiliation:
Laboratory for Advanced Material Synthesis, Code 6861, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
W. J. Desisto
Affiliation:
Laboratory for Advanced Material Synthesis, Code 6861, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
R. J. Gorman
Affiliation:
Laboratory for Advanced Material Synthesis, Code 6861, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
Get access

Abstract

A kinetic model is presented to explain GaN growth. The model is based on established values for the N and Ga desorption kinetics and well founded assumptions on the adsorption and decomposition of the N and Ga containing precursors. When grown on similar nucleation layers, it is shown that high quality GaN films are achieved when the V/III ratio is chosen to be slightly larger than the Ga and N desorption rates. The model is verified by comparing the structural, optical, and electrical properties of the GaN to the growth temperature and V/III ratio. The model explains several features of GaN growth including, growth conditions for smooth surface morphology, growth conditions for highly resistive GaN, and a possible explanation for the origin of Ga and N vacancies in GaN. Based on the growth model, ordering of the GaN during growth is achieved via an adsorption/desorption cycle where Ga and N containing species are exchanged between the gas phase boundary layer and the solid surface. Consequences of the model on establishing growth conditions and run-to-run reproducability are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Group III nitride material reviews: Davis, R.F., Proc. IEEE 79, 702 (1991); S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992); S.N. Mohammad, A.A. Salvador, and H. Morkoc, Proc. IEEE 83, 1306 (1995).Google Scholar
[2]. Koleske, D.D., Wickenden, A.E., Henry, R.L., DeSisto, W.J., and Gorman, R.J., J. Appl. Phys., submitted.Google Scholar
[3]. Seki, Y., Watanabe, H., Matsui, J., J. Appl. Phys. 49, 822 (1978).Google Scholar
[4]. Pauling, L., The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (Cornell University, Ithaca, 1960).Google Scholar
[5]. Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett. 64,1687 (1994).Google Scholar
[6]. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N, Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
[7]. For reviews of MOVPE growth see, Gaskill, D.K., Wickenden, A.E., Doverspike, K., Tadayon, B., and Rowland, L.B., J. Elec. Mat. 24, 1525 (1995); O. Briot, J.P. Alexis, M. Tchounkeu, R.L. Aulombard, Mat. Sci. and Eng. B43, 147 (1997); R.D. Dupuis, J. Crystal Growth 178, 56 (1997).Google Scholar
[8]. Doverspike, K., Rowland, L.B., Gaskill, D.K., Binari, S.C., Freitas, J.A. Jr., Qian, W., and Skowronski, M., Inst. Phys. Conf. Ser. No. 141, 101 (1995).Google Scholar
[9]. Nakadaira, A. and Tanaka, H., J. Electron Mat. 26, 320 (1997).Google Scholar
[10]. Hersee, S.D., Ramer, J.C., and Malloy, K.J., MRS Bulletin 22, 45 (1997).Google Scholar
[11]. Johnson, W.C., Parsons, J.B., and Crew, M.C., J. Phys. Chem. 36, 2651 (1932).Google Scholar
[12]. Munir, Z.A. and Searcy, A.W., J. Chem. Phys. 42, 4223 (1965).Google Scholar
[13]. Groh, R., Gerey, G., Bartha, L., and Pankove, J.I., Phys. Stat. Sol. A 26, 353 (1974).Google Scholar
[14]. Schoonmaker, R.C., Buhl, A., and Lemley, J., J. Phys. Chem. 69, 3455 (1965).Google Scholar
[15]. Bolgar, A.S., Gordienko, S.P., Ryklis, E.A., and Fesenko, V.V., in: Chemistry and Physics of the Nitrides (ed. by G.V., Samsonov) [;in Russian];, (Naukova, Dumka, Kiev 1968), p. 151; also see I.G. Pichugin and D.A. Yas'kov, Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 6, 1973 (1970).Google Scholar
[16]. Honig, R.E. and Kramer, D.A., RCA Rev. 30, 285 (1969).Google Scholar
[17]. Stringfellow, G.B., Organometallic Vapor-Phase Epitaxy: Theory and Practice, (Academic Press, Boston, 1989).Google Scholar
[18]. Brandt, O., Yang, H., and Pioog, K.H., Phys. Rev. B 54,4432 (1996).Google Scholar
[19]. Hersee, S.D., Ramer, J., Zheng, K., Kranenberg, C., Malloy, K., Banas, M., and Goorsky, M., J. Elecron. Mat. 24, 1519 (1995).Google Scholar
[20]. Wickenden, A.E., Gaskill, D.K., Koleske, D.D., Doverspike, K., Simons, D.S., and Chi, P.H., Mat. Res. Soc. Symp. Proc. 395, 679 (1996).Google Scholar
[21]. Wickenden, D.K., private communication, 1996.Google Scholar
[22]. Keller, B.P., Keller, S., Kapolnek, D., Kato, M., Masui, M., Imagi, S., Mishra, U.K., DenBaars, S.P., Electron. Lett. 31, 1102 (1995).Google Scholar
[23]. Brandt, O., Yang, H., Rampert, A. and Ploog, K.H., Mat. Res. Soc. Symp. Proc. 395, 27 (1996).Google Scholar
[24]. Riechert, H., Averbeck, R., Graber, A., Schienle, M., StrauB, U., and Tews, H., Mat. Res. Soc. Symp. Proc. Vol.449, 149 (1997).Google Scholar
[25]. Hacke, P., Feuillet, G., Okumura, H., Yoshida, S., Appl. Phys. Lett. 69, 2507 (1996).Google Scholar
[26]. Yu, Z., Buczkowski, S.L., Giles, N.C., Myers, T.H., and Richards-Babb, M.R., Appl. Phys. Lett. 69, 2731 (1996).Google Scholar
[27]. Buczkowski, S.L., Yu, Z., Richards-Babb, M., Giles, N.C., Romano, L.T., and Myers, T.H., Mat. Res. Soc. Symp. Proc. 449, 197 (1997).Google Scholar
[28]. Nakanisi, T., J. Cryst. Growth 68, 282 (1984).Google Scholar
[29]. Sung, M.M., Aln, J., Bykov, V., Rabalais, J.W., Koleske, D.D. and Wickenden, A.E., Phys. Rev. B. 54, 14652 (1996).Google Scholar