Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T16:13:00.223Z Has data issue: false hasContentIssue false

Kinetics, Microstructure And Mechanisms of Ion Beam Induced Epitaxial Crystallization of Semiconductors.

Published online by Cambridge University Press:  26 February 2011

R.G. Elliman
Affiliation:
CSIRO Chemical Physics, P.O. Box 160, Clayton, 3168, Australia.
J.S. Williams
Affiliation:
RMIT Microelectronics Technology Centre, Melbourne, Australia.
D.M. Maher
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J., U.S.A.
W.L. Brown
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J., U.S.A.
Get access

Abstract

Ion-beam induced epitaxy is shown to be essentially athermal over the temperature range 200-400°C, and to exhibit no dependence on substrate orientation and little dependence on doping in this regime. On the other hand, the formation and propagation of defects during growth and the interaction of the advancing crystal-amorphous interface with implanted impurities is essentially identical for both thermally induced and ion-beam induced epitaxy. These observations lead to a simple model for ion-beam induced epitaxial crystallization in which epitaxial growth is nucleated by defects generated at, or near, the crystal-amorphous interface by the ion beam. Comparisons of ion-beam induced epitaxy and thermally induced epitaxy suggest that the 2.7 eV activation energy associated with the latter process is dominated by a 2.0 eV nucleation step.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Csepregi, L., Kennedy, E.F., Lau, S.S., Mayer, J.W. and Sigmon, T.W.. Appl. Phys. Lett., 29, 645 (1976).CrossRefGoogle Scholar
2. Williams, J.S.. Chapter 5, Surface Modification and Alloying by Laser, Ion and Electron Beams, edited by Poate, J.M. and Foti, O.. (Plenum Press, N.Y., 1983).Google Scholar
3. Olson, G.L., Kokorowski, S.A., Roth, J.A. and Hess, L.D.. Mat. Res. Soc. Symp. Proc. 13, 141 (1983).CrossRefGoogle Scholar
4. Csepregi, L., Kennedy, E.F., Mayer, J.W. and Sigmon, T.W.. J. Appl. Phys. 49, 3906 (1978).CrossRefGoogle Scholar
5. Csepregi, L., Kennedy, E.F., Gallagher, T.J., Mayer, J.W. and Sigmon, T.W.. J. Appl. Phys. 48, 4234 (1977).CrossRefGoogle Scholar
6. Suni, I., Goltz, G., Grimaldi, M.G., Nicolet, M.A. and Lau, S.S.. Appl. Phys. Lett. 40, 269 (1982).CrossRefGoogle Scholar
7. Spaepen, F. and Turnbull, D., in Laser Annealing of Semiconductors, edited by Poate, J.M. and Mlayer, J.W.. (Academic Press. New York 1981). p.15.Google Scholar
8. Williams, J.S. and Elliman, R.G.. Phys. Rev. Lett. 51, 1069 (1983).CrossRefGoogle Scholar
9. Suni, I., Goltz, G. and Nicolet, M.A.. Thin Solid Films, 93, 171 (1982).CrossRefGoogle Scholar
10. Holmen, G., Buren, A. and Hogberg, P.. Rad. Effects 24, 51 (1975).CrossRefGoogle Scholar
11. Holmen, G., Peterstrom, S., Buren, A. and Bogh, E.. Rad. Effects. 24, 45 (1975).CrossRefGoogle Scholar
12. Golecki, I., Chapman, G.E., Lau, S.S., Tsaur, B.Y. and Mayer, J.W.. Phys. Lett. 71A, 267 (1979).CrossRefGoogle Scholar
13. Nakata, J. and Kajiyama, K.. App. Phys. Lett. 40, 686 (1982).CrossRefGoogle Scholar
14. Svensson, B., Linnros, J. and Holmen, G.. Nucl. Instr. Meth. 209/210, 755 (1983).CrossRefGoogle Scholar
15. Elliman, R.G., Johnson, S.T., Short, K.T. and Williams, J.S.. Mat. Res. Soc. Symp. Proc. 27, 229 (1984).CrossRefGoogle Scholar
16. Holmen, G., Linnros, J. and Svensson, B.. Appl. Phys. Lett. 45, 1116 (1984).CrossRefGoogle Scholar
17. Linnros, J., Svensson, B. and Holmen, G.. Phys. Rev. B30, 3629 (1984).CrossRefGoogle Scholar
18. Elliman, R.G., Johnson, S.T., Pogany, A.P. and Williams, J.S.. Nucl. Instr. Meth. 7/8, 310 (1985).CrossRefGoogle Scholar
19. Williams, J.S., Elliman, R.G., Brown, W.L. and Seidel, T.E.. Mat. Res. Soc. Symp. Proc. 37, 127 (1985).Google Scholar
20. Williams, J.S., Elliman, R.G., Brown, W.L. and Seidel, T.E.. Phys. Rev. Lett., 55, 1482 (1985).CrossRefGoogle Scholar
21. Williams, J.S., Brown, W.L., Elliman, R.G., Knoell, R.V., Maher, D.M. and Seidel, T.E.. Presented at the 1985 MRS Spring Meeting, San Francisco, U.S.A. To be published.Google Scholar
22. Linnros, J. and Holmen, G.. Presented at the 1985 Ion Beam Analysis Conference, Berlin. Nucl. Instr. Meth. B. To be published.Google Scholar
23. Elliman, R.G., Williams, J.S., Johnson, S.T. and Pogany, A.P.. Presented at the 1985 Ion Beam Analysis Conference, Berlin. Nucl. Instr. Meth. B. To be published.Google Scholar
24. Maher, D.M., Seidel, T.E., Williams, J.S. and R.G. Elliman. To be presented at the 1986 Meeting of the Electrochemical Society.Google Scholar
25. Elliman, R.G., Poate, J.M., Williams, J.S., Gibson, J.M., Jacobson, D.C. and Sood, D.K., Mat. Res. Soc. symp. Proc. This proceedings.Google Scholar
26. Elliman, R.G., Poate, J.M., Short, K.T. and J.S. Williams. To be published.Google Scholar